Machine learning approach to
support ticket forecasting from
software logs

Matti Haukilintu

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Jyvaskyla 01.08.2022

Supervisor

Prof. Arto Visala

Advisor

MSc Petri Pyoria

Aalto University
School of Electrical
[|

Engineering

Copyright © 2022 Matti Haukilintu

School of Electrical www.aalto.fi

A Aalto University Aalto University, P.O. BOX 11000, 00076 AALTO
B Engineering Abstract of the master’s thesis

Author Matti Haukilintu
Title Machine learning approach to support ticket forecasting from software logs

Degree programme Automation and electrical engineering

Major Control, Robotics and Autonomous Systems Code of major ELEC3025
Supervisor Prof. Arto Visala

Advisor MSc Petri Pyoria

Date 01.08.2022 Number of pages 63+9 Language English

Abstract

Samlink develops robotic process algorithms for its banking customers to perform
mechanical tasks and improve business efficiency. Unfortunately, these robots often
encounter errors, and bank clerks have to manually complete the tasks they leave
behind. The errors are reported by the bank clerks to Samlink’s technical support
team as technical support tickets which are then investigated by the development
team.

Logs written by the robotic process algorithms are essential for fixing the issues.
Due to the number and extent of the logs, debugging is very laborious. This thesis
explores the possibility of utilizing a cloud-based machine learning environment to
find a connection between the support tickets and log events. This will be used to
develop a log monitoring machine learning system, capable of alerting developers of
a potential incoming ticket even before bank clerks themselves detect the error.

The data used in the study is first anonymized in a production environment in
order to preserve data privacy. The data is then preprocessed into a cleaner format,
so that it can be processed by a machine learning algorithm.

In the machine learning phase, anomaly detection is applied to identify possible
log events leading to a support ticket. Random delay between the robotic process
algorithm log entries and the tickets sent by the clerks is addressed by time frame
compression and hybrid machine learning, which uses two algorithms at different
stages of the machine learning pipeline.

This study could not prove the existence of a connection between log entries and
technical support tickets, that the algorithm could detect. The numerous problems
that were encountered affected the choice of components and the use of parameters.
If these problems can be solved, it is possible that a connection between logs and
support tickets is found. It is also suspected that enhancing the format of the logging
would improve the results. Nonetheless, further research is needed.

Keywords Machine learning, robotic process automation, anomaly detection, log
analysis, hybrid machine learning

School of Electrical www.aalto.fi

A Aalto University Aalto-yliopisto, PL 11000, 00076 AALTO
B Engineering Diplomityon tiivistelma

Tekija Matti Haukilintu
Tyon nimi Vikatikettien ennustaminen sovelluslokeista koneoppimista hyodyntaen

Koulutusohjelma Automaatio- ja sahkotekniikka

Paaaine Ohjaus, robotiikka ja autonomiset Paaaineen koodi ELEC3025
jarjestelmaét

Tyon valvoja Prof. Arto Visala
Tyon ohjaaja FM Petri Pyoria
Paivamaara 01.08.2022 Sivumaara 63+9 Kieli Englanti

Tiivistelma

Samlink kehittda pankkiasiakkailleen ohjelmistorobotteja suorittamaan mekaanisia
tehtavid ja tehostamaan liiketoimintaa. Valitettavan usein kyseiset robotit kohtaavat
virheen, ja pankkivirkailijoiden on suoritettava késin loppuun niiden jattdmat tehtévat.
Tastéd seuraa Samlinkin tekniselle tuelle virkailijoiden kirjoittama vikatiketti, jonka
perusteella kehitystiimi alkaa tutkia ongelmaa. Vianselvityksessa oleellisen tarkeita
ovat ohjelmistorobottien kirjoittamat lokit.

Lokien maarasta ja laajuudesta johtuen vianselvitys on hyvin tyolastd. Téssa
diplomity6ssa tutkitaan mahdollisuutta hyédyntaé pilvipalvelun koneoppimisym-
paristoa vikatikettien ja lokitapahtumien vilisen yhteyden loytamiseksi. Témén
avulla pyritdan kehittaméaan tuotantolokeja lukeva koneoppimisjarjestelma, joka
kykenee varoittamaan kehittdjia mahdollisesti saapuvasta tiketista jo ennen kuin
pankkivirkailijat itse havaitsevat vian.

Tutkimuksessa kaytetty data anonymisoidaan ensin tuotantoympéristossa tie-
tosuojan sailyttamiseksi. Tamén jalkeen dataa esikasitelladn siistimpadan muotoon,
jotta se olisi koneoppimisalgoritmin kasiteltavissa.

Koneoppimisvaiheessa pyritaédn soveltamaan anomaliatunnistusta mahdollisten
tikettiin johtavien lokitapahtumien tunnistamiseksi. Satunnainen viive ohjelmisto-
robotin lokimerkinnén ja virkailijan lahettdmén tiketin vélilla yritetdéan ratkaista
aikaikkunakompressiolla ja hybridimuotoisella koneoppimisketjulla, jossa hyodynne-
tdan kahta algoritmia ketjun eri vaiheissa.

Tamén tutkimuksen perusteella ei voitu osoittaa, etta lokimerkintéjen ja vikati-
kettien valilla on yhteys, jonka algoritmi kykenee havaitsemaan. Lukuisat kohdatut
ongelmat vaikuttivat valittuihin komponentteihin ja kédytettyihin parametreihin.
Mikali namé ongelmat voidaan ratkaista, on tuo yhteys lokien ja tikettien mahdollis-
ta loytaa. Myos lokituksen muotoilun kohentamisen epéillaan parantavan tuloksia.
Lisdtutkimuksille on joka tapauksessa tarvetta.

Avainsanat Koneoppiminen, ohjelmistorobotiikka, anomalioiden tunnistaminen,
lokien analysointi, hybridikoneoppiminen

Preface

Terve,

Nelja viimeista vuotta kymmenesta yliopisto-opiskeluvuodesta onnistui kulumaan
tdmén tyon saattamiseksi maaliin. Aihe vaihtui moneen otteeseen, ja siiné sivussa
asuinkaupunki, tyopaikka, siviilisdaty seké sukunimikin. Siispd ensimmaisena ja
erityisesti haluan kiittaa niita, jotka eivat vaihtuneet:

Kiitos vaimolleni ja vanhemmilleni kaikesta tuesta ja jaksamisesta. Ilman teité olisin
jattanyt leikin kesken.

Kiitokset AS:lle ja rakkaille kiltalaisille kaikista railakkaista kokemuksista. Erityisesti,
kiitos Yojayndjoukkue'12, sekd SorsAShtajat’12, Graniittiset Pakarat’13 ja TaASh
Mennéaan Saatana’l4. Teidan kanssanne opinnot olivat sekéd opiskelun arvoisia, etté
piirun verran kevyempié. Olen teille valmistumiseni velkaa. Kiitos my6s NAKS Aasien
KimbleSeurue lukemattomista peleistéd, jotka opettivat yhden elamén perusasian:
“Korottamatta voittaminen on kuin voittaisi ilman korotusta”.

Kiitos entisille ja nykyisille kollegoilleni Samlinkissa. FEtenkin lopputyoryhmaé-
painetyoryhmén jéasenet: olitte se viimeinen naula arkkiin jota tarvittiin lentoon-
lahtemiseen.

Kiitokset ohjaajalleni Petri Pyoridlle ja valvojalleni Arto Visalalle tuesta ja ohjeista
tdman tyon aikana. Kiitos Heikki ja Aino, jotka autoitte kielentarkistuksessa, seké
kiitos Otto, jonka ansiosta tutkimuksella oli dataa kaytossa ensinkaén.

Kiitos kaikille jotka uskoitte tdmén paivan vield saapuvan. Autoitte minua uskomaan
itseeni. Kiitos myos kaikille niille jotka déneen eivit tdhén uskoneet. Autoitte minua
ylittamaan itseni. Than kiusallani teita ajatellen.

Kiitos Annika Salamalle, jota ilman kukaan meisté ei olisi valmistunut.

Kuten eras viisas mies sanoi:
“Tarkeinta ei ole maaranpad, vaan se, ettd matka on ohi.”

ja kiitos kaloista.

Jyvaskyla, July 29, 2022

Matti Haukilintu

Contents

Abstract

Abstract (in Finnish)
Preface

Contents

Symbols and abbreviations

1 Introduction
1.1 Background and motivation L.
1.2 Research objectives
1.3 Scope . . .o
1.4 Structure

2 Background
2.1 Machine learning algorithms and training
2.2 Cloud ML platforms
2.3 Regression analysiso oL
2.4 PCA-based anomaly detection
2.5 Other anomaly detection algorithms
2.6 N-gram features and feature hashing
2.7 Robotic process automation
2.8 Data sensitivityo
2.9 Log data analysis and anomaly detection with ML

3 Research material and methods
3.1 Support ticket data
3.2 RPAlogdata
3.3 Data anonymizationo Lo

3.4 Azure cloud resources
3.5 Azure ML Studio

4 Machine learning pipeline structure
4.1 Hybrid machine learning oL
4.2 HML phase 1: PCA-based anomaly detection
4.3 HML phase 2: Ticket count estimation with regression
4.4 Pipeline branching L
4.5 Comparable metrics oo

5 Results
5.1 Memory issues and limitations
5.2 Algorithm estimation results
5.3 Improvement discussion

6 Summary

References

A Final pipeline structure
B RPA log data example

C Anonymization script

D CSV data cleaning script

E Example of R-script

57

58

64

65

67

69

71

Symbols and abbreviations

Symbols

e FError term

Operators

AT Transpose of vector A
f(X,,Y,) Undefined algebraic equation between operands X,,,Y,, for example
X - X — =X

Abbreviations

Al Artificial Intelligence

ML Machine Learning

HML Hybrid Machine Learning

RPA Robotic Process Automation

SQL Structured Query Language

JSON JavaScript Object Notation

CSV Comma-Separated Values

GDPR General Data Protection Regulation
PCA Principal Component Analysis
ADA Anomaly Detection Algorithm

[oT Internet of Things

UI User Interface

API Application Programming Interface

1 Introduction

Artificial intelligence (AI) and machine learning (ML) have found their way into
more and more fields of business. In the banking business they are already used
in fraud detection, risk management and service recommendations.[1] Even though
these modern technologies utilizing big data are widely used abroad, AT and ML
are not yet that commonly in the Finnish banking field. Instead, many self-acting
solutions are used to streamline manual labor which could be called intelligent, but
these solutions are merely highly automated processes and thus cannot be included
in the category of AI. One of these technologies used in Finnish banking systems is
Robotic Process Automation (RPA).

RPA operates “on the user interface of other computer systems in the way a
human would do”,[2] but is strictly bounded by predefined operations, which makes
it prone to unforeseen situations such as faulty input. RPA, like generally all other
software, produces log to “register the automatically produced and time-stamped
documentation of events, behaviors, and conditions relevant to a particular system”[3].
Logs don’t follow any standards or form guidelines which tends to make log analysis
and log based problem-solving troublesome. This is also the case with RPAs developed
by Oy Samlink Ab.

Oy Samlink Ab (Samlink from now on) was founded in 1994 and is now owned by
Kyndryl. From the early years, while going by the name of Samcom, the company
was owned by several Finnish banks for which it developed all sorts of I'T solutions.
Nowadays, Samlink offers a wide variety of banking solutions from basic banking
system to end user targeted software such as Codeapp mobile application.

In addition to banking, Samlink develops multiple other IT solutions to an
extensive range of customers, for example entertainment platform solutions for DNA.
Even though Samlink can be considered a modern technology company, the most
modern Al technologies have not yet been adopted as a part of the variety of tools
used in development. However, RPA has been actively used in some banking solutions
to reduce the amount of manual labor required from banking clerks.

Along with continuous development and product maintenance services, Samlink
also offers a technical help desk regarding the software solutions it produces. As
no IT solution comes without bugs or misbehaviour, Samlink’s service desk has to
use considerable amount of labor to resolve the possible issue behind the technical
support request tickets received. In many cases, the problem-solving starts by reading
the log and analyzing the data written by the processes in question.

In this study, we aim to find if it is possible to utilize machine learning methods
in analyzing logs created by Samlink RPA’s. Ultimately, we intend to train ML
which is able to predict the arrival of a technical support ticket thus giving a warning
for developers about possible issues in the production.

1.1 Background and motivation

In the field of information technology, logging is one of the most important methods
in problem-solving, be it software or operating system related.[3] Typically, at least

10

in Samlink’s processes, logging is more verbose than it needs to be. This is usually
because when the problem occurs, it is easier to already have the verbose logs
available than setting logging to more verbose mode and trying to replicate the issue.
Too verbose logging, however, leads into two problematic issues for developers.

First of, the size of log is huge and finding the critical parts related to the problem
in hand takes more time. Of course, with stricter logging, pinpointing the faulty
event from within the logs would be faster. However, solving the problem with only
critical error messages could be more time-consuming if crucial context is missing.

Secondly, a well-designed software is able to retry the process after first failure,
but logging is done in real time regardless of the process result. This means, that
each process failure is logged even though said process might eventually succeed
on later attempt. Thus, logs may include dozens of rows of information about a
problem, which is not critical information after all. These issues make log analyzing
considerably laborious.

Production logs are usually not viewed if everything is presumably working as
intended. Technical support tickets are both the last and most visible indicators of
an issue in the system. When a technical support ticket is received from banking
clerks it means that something is wrong in a very visible way. Roughly speaking,
there are two types of technical tickets that are because of a clear misbehavior of the
RPA system (not, for example, due to a user error). First are the tickets that uncover
an unknown bug in the system which can be either fixed or instructed to user how to
avoid. Second type of tickets are somewhat pre-known issues that occur from time
to time and are either fixed with updating parts of the system or by rebooting the
process.

Typically, in software systems, if an issue is known and can be fixed by rebooting
something, developers can create log monitors that search for certain keywords and
raise an alert if they are encountered. Developers can either run a reboot manually
after a log alert has been received or set up an automated script to do it immediately
when such keyword has been found. However, when it comes to RPA’s and technical
tickets, it is hard to say what the issue in question is by reading the RPA logs word
by word without context. New kind of issues can be more frequent than already
confronted ones, and a clear keyword linked to a certain problem may not exist
without considerable amount of false positive matches.

Machine learning algorithms are widely used to find patterns from massive amount
of data making ML an ideal tool for log analysis. Patterns, however, need a connection
to a visible issue to be useful. If the RPA system has encountered an error but is
able to retry successfully, then no issue that requires immediate concern has actually
happened. Hence, RPA log analyzing with ML can find meaningful patterns only if
they relate to actual technical tickets.

If Samlink support has received a help request the issue behind the request is not
fresh anymore. In the event of RPA job failing, it takes some time for the clerk to
notice the issue, write a help request to first support level, which then redirects the
ticket to the corresponding team. Furthermore, if the issue is noticed on friday, it
takes a few more days to be handled by RPA developers due to the weekend. This
leads to a noticeable delay in processes that were supposed to be dealt by RPA but

11

which now have to be manually taken care of by clerks.

If a correlation between logs and received tickets exists and an ML algorithm
is able to find it, it could be possible to create an ML-based log analyzer that can
alert developers about an ongoing issue before banking clerks encounter it. With
automated scripts set up to receive such alerts, some issues could even be fixed in
the production automatically without human interaction. This would significantly
reduce the time and labor needed from developers and bank clerks alike.

1.2 Research objectives

This research aims to pave the way for machine learning application developers inside
Samlink. Multiple obstacles need to be tackled as most of the phases in this study
have not yet been encountered inside the company.

First, it is crucial to construct some basic rules considering the format of log
data to make it usable for ML algorithms. Log data formatting is one of the key
elements in automatic log analysis applications as it is not for just machines but also
for people to read.

As today more and more concern is set on anonymization, the data used for
machine learning must be sanitized. As a consequence, one major objective is to
create a clean dataset that is safe to use in a cloud environment without raising
concern around security and privacy issues. In addition to this, data must also be
clean enough so that ML algorithms are able to process it.

As mentioned, Samlink has not yet developed ML applications. In order to
facilitate deployment of applications for future ML application developers, this study
aims to document the process of ML deployment thoroughly enough to create a
simple guide to follow in possible future ML projects in Samlink.

Finally, the main questions this research aims to answer are: is there such a
correlation between RPA run logs and technical support tickets that an ML algorithm
is able to find, and can this correlation be used to forecast a ticket arrival?

1.3 Scope

In order to limit the study to feasible length and content, it is necessary to define
the scope for the thesis. Before diving in to the scope of the research objectives, we
must first make one assumption regarding the data from which ML is going to find
some meaning. In order to find a connection between log data and support tickets,
we make a hypothesis that errors leading to tickets are visible to or parseable by ML
algorithm. In addition, as we are going to utilize an anomaly detection algorithm in
log analysis, we must also assume that these errors on the log are, in fact, anomalies.
The results will be compared against these assumptions to test this hypothesis.

Data anonymization

Anonymization in the context of this thesis refers to a data sanitization process
purposed to edit the data into a more secure form in the point of view of privacy. In

12

this study we aim to create a dataset that can be used in ML training. In this respect,
anonymization is not the main focus of the study but only treated as a sub-phase of
the data preprocessing. Nevertheless, anonymization is the most important phase of
data preprocessing from the privacy perspective.

Keeping this in mind, anonymization is covered rather superficially, only enough
to explain the reasons behind actions taken during the anonymization process.

Azure setup

The ML training and result scoring is done in Azure ML environment. Azure is used
for ML processes because Samlink already had licenses for Azure Cloud that is used
for RPA process control. Integrating existing Azure resources with ML pipelines and
endpoints constructed during this study was seen as a big advantage. Thus, no other
ML cloud provider was considered. However, other Azure competitors are mentioned
to the extent that their existence is recognised.

As one of the objectives is to create an initial guideline for ML process commis-
sioning, the Azure setup phase is documented in such detail reflecting the importance
of this information for future developers starting Azure ML projects in Samlink.

Data requirements

Data purity in the perspective of machine learning algorithms creates challenges at
the beginning of ML training. If data is not consistent, has lots of missing values or
is formed in an unanticipated way, it requires considerable amount of preprocessing
which slows the training process and causes errors in pipeline runs.

In order to create a baseline for Samlink ML projects, this study aims to give
basic criteria for what is required from the data, so it is easily analyzable by ML
algorithms.

Machine learning methods

Several different machine learning algorithms have been created for different appli-
cations. For example, to make an algorithm that can predict the price of a listed
apartment[4] we could use linear regression, and in order to create an algorithm that
detects possible cyber threats from network traffic[5], a two-class support vector
machine could be utilized. These two methods are very different in usage and have
their pros and cons for different applications.

As different methods can be used in creative ways in very different applications
depending on how the data is presented and how the ML problem is formed, this
study focuses on just a few easily approachable training methods that were seen
suitable to answer the study objectives.

When it comes to anomaly detection algorithms (ADA), only principal component
analysis (PCA) is considered because PCA-based Anomaly Detection component
is the only one out of the two existing anomaly detection algorithms that is usable
in Azure ML Studio. As only Azure ML Studio is used during this study, no other
anomaly detection algorithms are debated. The other ADA-component, One-Class

13

Support Vector Machine, is discussed briefly to explain its unsuitableness for the
current case.

1.4 Structure

In the Introduction section we explained the research motivation, main objectives
and scope of the study. The next section, Background, clarifies the general machine
learning concepts and RPA terms relevant to this thesis. We also discuss the
mathematical theories behind the most significant algorithms utilized in this study,
and the main methods that can be used to secure data privacy.

The third section, Research material and methods, explains in detail the data
format and contents as well as the steps used to sanitize and preformat the data for
ML algorithm training. In addition, resources needed to set up the ML designing and
training environment are discussed. This section is followed by Machine learning
pipeline structure, which describes the ML pipelines set up during the study and
specifies their contents in detail.

The Results section compares how different algorithms performed and how well
the research questions could be answered. Before that we discuss the memory issue
that affected greatly our component selections and data amounts. At the end of the
section we evaluate the results and discuss what could have been done better.

Finally, in the section Summary, we summarize the research goals and outcomes.

14

2 Background

Machine learning, or ML, is a subcategory of the Al field and data science. Typically,
ML refers to a set of technologies used to “build computers that improve automatically
through experience”. [6] This is generally considered a machine way to simulate the
human learning process. ML usage has become more common and is nowadays
widely used in many fields, not just in general information technology and computer
science. This is because data can be gathered from anywhere, and where there is
data to be processed, ML can be used to process it. Computer algorithms are able to
find statistical correlation and patterns from places overlooked by the human mind,
or in cases where the amount of data is just too much for people to process. This
is why ML has proved its power in various empirical science fields, such as biology,
cosmology or social science. [6]

In this section, key concepts of ML are explained briefly and several ML features
that are most relevant to this study are explored. We also briefly discuss about data
sensitivity and how it was addressed during this study.

2.1 Machine learning algorithms and training

An algorithm is a finite sequence of (typically) mathematical operations that are
used to solve a specific problem, generally by repetition of certain steps until the
problem resolves. [7] Algorithms are the main component inside machine learning,.
By iterating through all the data points, an algorithm is able to, for example, find
repeating patterns, mathematical or logical connections, or unusual anomalies that
would appear seemingly normal for the human eye.

Algorithms operate on a set of rules and parameters. In order to utilize an
algorithm to solve a problem, the algorithm is first trained by tuning these parameters
to fit the current case. Usually, ML algorithms can be trained in three ways:
supervised, unsupervised, and reinforcement learning. [6] Even more training methods
exist that usually combine those mentioned. [8, 9] For the sake of simplicity, we focus
only on the three main methods.

In supervised learning, the algorithm is given data with ready answers on
how the data needs to be interpreted. Algorithm then tries to figure out the rules
behind how the given data and the correct answers are related. [8] In unsupervised
learning, on the other hand, the algorithm does not get model data from which to
train itself, but instead it tries to find clusters or groups inside the data that are
linked together more closely than to other data points. [4] Reinforcement learning
refers to a method where a computer program is given a goal and provided feedback
as a reward. This reward is what the program aims to maximize by adjusting the
parameters it has been given. [§]

In ML, there are multiple algorithms to solve different problems and no jack-of-
all-trades algorithm exists. Fach algorithm is suitable for a certain type of problem.
To simplify, algorithms are usually divided into three or four categories based on the
problem type. [10]

Regression algorithms predict values and are typically used with supervised

15

learning. A usual example of a regression problem is house price prediction using
typical house features such as building year, location, number of rooms etc. . The
algorithm then assigns each feature a weight value which determine the final price of
the house. [10]

Classification algorithms predict categories and are also used most commonly
with supervised learning. Depending on the algorithm, they can predict between
two or more categories. Examples of classification problems could be spam mail
identification with two class classification, or flower species recognition from images
with multiclass classification. [10]

Clustering algorithms use unsupervised learning to find structures inside data.
This is done, for instance, by first providing the amount of clusters to search to the
algorithm, which then calculates a center point for each cluster so that they are as
far away from each other as possible, while the data points surrounding each center
are as close to each other as possible. [9] This could be used, for example, to find
meaningful customer segments from transaction data in order to improve targeted
advertising. [11]

Dimension reduction algorithms are a separate type of algorithms used
with unsupervised learning, but they are usually combined with other algorithms to
solve the main problem. With dimension reduction, main algorithm calculations are
streamlined by first reducing the amount of feature dimensions. [12]

These four ML problem types and most known algorithms of each type are
presented in the figure 1.

Machine Learning Algorithms Cheat Sheet

Unsupervised Learning: Clustering Unsupervised Learning: Dimension Reduction

e START

Dimension Topic

ore hyili c B
Reduction Modeling Probabilistic

Prefer Categorical
Probability Variables

Need to Hierarchical Have
Specify k \erarcnica Responses

Supervised Learning: Regression

Data Is Srrbl D speed or Predicting = Speed or
Too Large EfREEE e Ac Numeric Accuracy

Figure 1: Machine learning cheatsheet for algorithm choosing|[12]

This study focuses on anomaly detection, which, simply put, is a clustering
problem where anomalies are rare incidents outside common clusters. However, in
this study we utilize a PCA-based anomaly detection algorithm, where PCA refers

16

to Principal Component Analysis, and which is a dimension reduction algorithm. [12]
PCA is discussed in more detail later in this section. In addition, we aim to find a
connection between anomalies and incident tickets by their amount in a timeframe,
which makes the topic in the end a regression problem.

Typically, the data used in algorithm training is divided in two parts. One part
is used for the training process, and the other is used to validate the results of the
training. These data parts must not overlap, but the algorithm is given data to
validate that it has not seen before. [13] For example, in supervised learning the
key values the algorithm is trained to find are hidden in the validation data. The
resulting values produced by the algorithm are compared to the hidden values and
the difference between the estimate and the real value can be used to determine how
well the current trained algorithm compares to others. However, in this study, we
are going to break that rule of non-overlapping training and validation data. The
reason for this is explained further in section 4.2.

2.2 Cloud ML platforms

Machine learning algorithms are not light to operate. ML is at its best with big
data where the large amount of data points makes it easier for algorithms to find
repeating patterns more reliably. [14] Data amount, however, requires huge resources
in terms of memory and computing power. Especially with online applications where
real time analysis of new input data is required with small latency, cloud computing
can make a big difference in terms of processing speed.

The online market offers several solutions for ML computing in cloud. Most
notable service providers for MLaaS (Machine Learning as a Service) are Google,
Amagzon, IBM, and Microsoft. Differences of each service provider are listed in
table 2.

Amazon’s new SageMaker service has replaced the old Amazon Machine Learning
service, and is very much like Azure Machine Learning service produced by Microsoft.
Compared to SageMaker and Azure, the Google Al Platform is missing anomaly
detection and ranking abilities. IBM Watson has even less features, as demonstrated
in table 2. [15]

Azure, however, has one major advantage compared to SageMaker and other
competitors, which is the UI environment of ML Studio. Most of the MLaaS providers’
solutions have some sort of no-code to low-code design features which makes pipeline
designing easy. Azure ML Studio lets the developer design and deploy full ML
pipelines with drag-and-drop user interface. [15, 16]

Each component in the pipeline designer can be tuned to certain extent. ML
Studio has a predefined set of ready algorithms to use. An example of Azure ML
Studio interface is shown in figure 3. Data to the ML Studio environment can be
imported from local storage, but also from various other Azure services such as
storage accounts with table and blob data. Trained ML pipeline can be published as
a cloud endpoint and inserted into a wider operation chain combining it with other
Azure services, like data storages and cloud computing resources. This allows the
designer to use ML computing capabilities with existing production environments

17

CLOUD MACHINE LEARNING SERVICES COMPARISON

Amazon ML Microsoft Google Al IBM Watson
and Azure Al Platform Machine
SageMaker Platform (Unified) Learning

Classification \/ \/ \/ \/
Regression : : \/ \/

Clustering

Anomaly
detection

Recommendation
Ranking

Data Labeling

MLOps pipeline { A ‘/
support

Built-in g 2
algorithms v v v
TensorFlow, Keras,
TensorFlow, scikit- Spark MLlLib, scikit-
learn, XGBoost, learn, XGBoost,
Keras PyTorch, IBM SPSS,
PMML

TensorFlow, MXNet, TensorFlow, scikit-

Supported Keras, Gluon. learn, PyTorch,
frameworks Pytorch, Caffe2, Microsoft Cognitive
Chainer, Torch Toolkit, Spark ML

altexsoft
softwar i engineering

Figure 2: Machine learning as a Service comparison. [15]
utilizing services such as IoT, API, or Kubernetes.

2.3 Regression analysis

Regression analysis is a typical approach in statistical science, and thus, in machine
learning too. Algorithms based on regression analysis are used to find relationships
between a set of variables, providing the means to “predict values of one variable
when given values of the others” making them a fundamental component in the ML
field. [17]

Regression algorithms intend to create a mathematical model that explains the
relations of the data. This usually means an algebraic equation which can be

18

Apply SQL Transformation M=

nnnnnnnnnnnnnnnnnnn

Figure 3: With drag-and-drop pipeline designer it is easy to get started with ML
programming in Azure ML Studio, and visualizing the process helps understand all
pipeline components and their relations to each other.

generalized in the following form,

Y = f(Xm, Bp) + e (1)

where Y is the data feature we are looking to find relation to, f is some function of m
independent variables (X,,), and p coefficients (3,). X,, can be opened as X, ..., X,
and 3, as B, ..., Bp. Note, that m and p do not have to be equal. A single X; refers
to a value of ith data row. The € refers to error term. The goal is to determine the
coefficients (3, in order to find a model that explains the data. [1§]

As an example, one of the best known principles for coefficient value solving is
the least square principle, which aims to minimize the sum of squared errors (SSE).
The smaller the SSE is, the closer each data point is to the suggested model, and
the better the model explains the data and can be used to make predictions. The
equation to solve in the least square principle derived from the generalized form,

SSE =2 = S[(Y — f(X1, o Xon, Brs ooy B))]2. (2)

Exact solution for this does not usually exist as there can be more coefficients than
independent variables (p > m), and minimizing the SSE does not always result
into a linear equation. This is typically the case in ML, and thus the model must
be found by iterative search process. As mentioned in the section 2.1, this is what
algorithms are build for.

To improve the efficiency of algorithm calculations, the general regression model
can be converted into matrix form. The same function in equation 1 can thus be
represented as,

Y=XB+F (3)

19

where Y is an n x 1 matrix of values in the data, X is an n x (m + 1) matrix of
independent variables, B is an (m + 1) x 1 matrix of unknown coefficient parameters,
and finally, F is an n X 1 matrix of error parameters. Thus, the equation of squared
errors (equation 2) that is to be minimized can be written as

ETE=(Y - XB)(Y - XB)=Y"Y —2B"X'Y + B"X"XB. (4)
In order to minimize this, we can take the derivative of matrix B,

O(ETE)
oB

Equating to zero gives the solutions of coefficient parameters

= —2XTY +2X"XB. (5)

B=(XTXx)'Xx"y. (6)

Ultimately, there usually is no one perfect model to describe real world data. As
an example, the function f in the general regression model can describe the relation
of X; and (; as a product of both terms. This would mean, that

f(XlaaXmaﬂbaﬁm) :Bﬂ—i_ﬁlxl—{'_‘_ﬂmxm (7)

which would be a linear regression model. Example of an algorithm using this method
is visualized in figure 4. However, real world problems cannot always be explained
with a linear model. Fitting a polynomial curve to the data may improve the results
of regression to a certain degree, but it also has its limits.

2.5

0 2, 4 6

Figure 4: Linear least squares algorithm. Algorithm tries to fit a linear model (red
line) on the data points, represented by the black dots, by minimizing the difference
between all the data points and the model estimate. [19]

Consider an algorithm that tries to keep a car driving on a straight road in its
lane. The model output is how much we should turn the steering wheel based on

20

how much we are off from the straight line. We might have constant parameters such
as wind effect, continuous error of the wheel axes, and tilt of the road. However, we
also have parameters that change over time and are dependent on other factors, such
as the weight of the car, and the temperature and wear of the tires. Therefore, with
the same location at the road, same car and same weather conditions, our result
could be different depending on how long has been driven before the current moment
which affects the tire temperature and thus pressure. Finding a model that best fits
the data depends also on the type of problem. There are numerous algorithms to
suit different situations, and usually the best algorithm can be found only by trial
and error.

2.4 PCA-based anomaly detection

Principal Component Analysis, or PCA, is a machine learning technique used to
analyze data and explain the variance in it. PCA analyzes data with multiple variables
and looks for correlations among them. The final output PCA gives is a new feature
space, i.e. a smaller set of features (variables), called principal components. [20]

In other words, PCA works by reducing the dimensionality of the data. First,
data must be standardized so that the mean of each variable is zero and the scale of
each feature is the same.

data point value — mean value of the feature

Standardized data point = 8
P standard deviation of the feature (8)
In practice, the data points of each variable, or column, is shifted so that their center
is at 0 and the scale is adjusted to match all the variables.

Next, a covariance matrix for all the columns is determined. As it is known,

covariance value between variables (or dimensions) is calculated with

Spa (X - X)(Y - Y)

cov(X,Y) = =D

(9)

where X and Y are different columns or variables, X and Y their mean values (which
both are zero after standardization), n is the number of rows or values in the data,
and so X; is the ith data point in the column X. [21]

Covariance matrix is formed by calculating the covariance value between each of
the dimensions (including self). For example, for 3 dimensional data with dimensions
x, Yy, and z, the covariance matrix would be

cov(xz,z) cov(x,y) cov(z,z)
C = |cov(y,x) cov(y,y) cov(y,z)|. (10)
cov(z,x) cov(z,y) cov(z,z)

Generally, the covariance matrix for n dimensions would then be, of course

cov(1,1) --- cov(1l,n)
C= : : . (11)

cov(n,1) --- cov(n,n)

21

Next, we find the eigenvectors and eigenvalues for the square-shaped covariance
matrix. As defined, for n x n dimensional matrix A, if exists a vector x that satisfies

Az = Az, (12)

where) is a scalar value, such vector x is an eigenvector of matrix A, and A is an
eigenvalue, forming the eigenpair of (A, x). [22]

Eigenvectors have a property, that either a matrix has zero of them, or there are
n eigenvectors for n X n dimensional matrix. Because in this case the eigenvectors
are for the covariance matrix of the original (standardized) data, they actually create
a new feature space made of principal components. More over, eigenvalues describe
their importance, so that the greater the eigenvalue is, the more significant the
eigenvector is describing the original data in principal component feature space.
When finding eigenpairs, we actually find the largest possible variance in the data.
Each eigenvector describes a principal component that is a linear combination of
the original variables. In figure 5 we can see an example of how eigenvectors of the
covariance matrix define a new axis system or new feature dimensions. [23] Each
eigenvector, or a principal component, is perpendicular with one another. Thus, the
data can be represented in the new axis system formed by eigenvectors.

L2y Ho (25

> U1

Figure 5: Principal components form a new axis system. In this two dimensional
example, eigenvectors py and s of the covariance matrix define new feature dimen-
sions. Thus, data point (2%, %) of dimensions x; and x5 can be presented as a point
(ui, pb) of the dimensions u; and po. The origin point of each principal component
axis is at the mean values of the data (Z; and Zs) as the data is standardized. [23]

By comparing the eigenvalues, we can determine a set of eigenvectors, or prin-
cipal components, that form a new feature space with fewer dimensions than the
original data, without losing a significant amount of information. We can calculate a
comparison value for each eigenvalue \; with

Ai
Percentage of variance = T 100 (13)

Organized from highest to lowest, we can make a scree plot to visualize the eigenvalue
ratios for all principal component. Example of an 8 dimensional data (which thus

22

has 8 principal components), with their eigenvalue variances ordered can be seen in
figure 6.

50 |]

40 - 2

30

20 |

10

ol O e _|

1 2 3 4 5 6 7 8
Principal components

Percentage of variance

Figure 6: Significance of principal components. In this example, eigenvalues, or
the variance of each principal component, are ordered on a scree plot. Values are
first converted to a percentage of the sum of all values in order to visualize both
their relationship to each other and their total share of information held by the
corresponding eigenvectors.

Practically, as principal component space describes the data and eigenvalues
describe the importance of each component, the percentage of variance is the portion
of the total information each principal component holds. Simply put, in our example
in figure 6, the first two principal components hold almost 70% of the original
information, the first three over 80%, and the last seven hold less than 20% of the
information. Thus, by creating a new data set using the first three components, we
can keep 80% of the information while reducing the dimensions from 8 to 3, which
would be significant improvement in terms of needed computing resources. The
amount of top principal components we choose to keep depends on the situation, but
one guideline is to select all components that describe more than a single variable’s
worth of information. For our 8 dimensional example, that would mean 1/8th, or
12.5%, meaning that we would select top 3 principal components and discard the
rest that are under 12.5% of variance. The remaining vectors form a new matrix
called feature vector:

Feature vector (F) = (x125...7)) (14)

where x; is the ith eigenvector or feature component we chose to keep, and p is the
amount of them, where p < n, n being the original amount of dimensions of the data.

Finally, we reorient our data from the original axes to the space defined by the
principal components with the following equation:

Final data = FT AT (15)

23

where A is the original data set with standardized data, which is transposed as well
as the feature vector multiplying it.[24, 25, 21]

With principal components describing the distribution and variance of the data
majority, we can use PCA to detect anomalies. This is done by analyzing each
input and computing its “projection on the eigenvectors, together with a normalized
reconstruction error. The normalized error is used as the anomaly score. The higher
the error, the more anomalous the instance is” [20]. Normalized error means, that
each anomaly score is between zero and one. Figure 7 illustrates the steps from data
standardizing to PCA reconstruction error calculating.

1. Find the mean

°
Y
o ©
e ©®
°
...+..
Y
® o o©
e o

3. Calculate the covariance matrix and
resolve its eigenvectors (and eigenvalues)

| 2. Standardize data based on mean

4. Reorient the data on the new feature space
and calculate the reconstruction error (red lines)

u

Figure 7: PCA anomaly detection explained step by step. The normalized recon-
struction error is the final anomaly probability score.

24

2.5 Other anomaly detection algorithms

Azure ML Studio has also another anomaly detection algorithm to use besides the
PCA-based one. This module is called One-Class Support Vector Machine. However,
it was not usable in the renewed ML Studio environment, but was only available
in the classic Azure ML Studio. In addition, this module was not deemed suitable
in our case, as the documentation mentioned that “The dataset that you use for
training can contain all or mostly normal cases.” Because the content of the data
used did not meet this requirement, the usage possibilities of this component were
not investigated. [26] To limit the scope of this study to reasonable proportions, we
will not discuss other anomaly detection algorithms (ADAs) further.

2.6 N-gram features and feature hashing

As discussed before, features are the key elements in ML algorithm training. As
textual input does not have any meaning to computers by itself, it is necessary to
create a connection between words and features for algorithm. In ML training, one
typical approach is to convert textual input into numerical features. For example,
by creating a dictionary of words used in the input and assigning each word an
identification number, we can express sentences as a count of certain words used. In
addition, words include meanings not only individually but also with relation to each
other and with their order. For example, words “success without errors” has the
opposite meaning than “errors without success” where same words exist in a different
order. We can add more information for the algorithm by creating word pairs and
groups in the dictionary. These groups are referred to as word grams, where n in
n-gram refers to the maximum number of words in a group of consecutive words in
the input sentence. [27]

Example of n-gram composition of a sentence can be seen in the table 1. Usually,
the unnecessary stop words are removed from the text (such as “the”), as they don’t
bring any additional meaning to words or sentence. One word grams are called
unigrams, two word grams bigrams, etc. . To compose the sentence “Lorem ipsum
dolor sit amet, quisquam est, qui dolor ipsum qui dolor sit amet” with different
n-gram dictionaries, we could make, for example, the following representation with
unigram dictionary:

1,2,3,4,5,6,7,8,3,2,8,3,4,5 (16)

where each number represents the index of a word in a unigram dictionary from
table 1.

N-gram representation of the text streamlines the algorithm processing of textual
features. However, each new word creates a new feature when converting text to
n-grams. This happens, because in order to present text as numerical features,
we need to create a new feature space out of the n-gram dictionary. Consider our
unigram dictionary from the previous example. This would convert one text column
into 8 unigram features, as seen in table 2.

As the number of word grams in a dictionary can increase significantly in complex
input cases, it is necessary to limit the resource usage by decreasing the features

25

Index Unigrams Bigrams Trigrams

1 lorem lorem ipsum lorem ipsum dolor
2 ipsum ipsum dolor ipsum dolor sit

3 dolor dolor sit dolor sit amet

4 sit sit amet sit amet quisquam
) amet amet quisquam amet quisquam est
6 quisquam quisquam est quisquam est qui
7 est est qui est qui dolor

8 qui qui dolor qui dolor ipsum

9 dolor ipsum dolor ipsum qui
10 ipsum qui ipsum qui dolor
11 qui dolor sit

Table 1: N-gram feature extraction from a sentence “Lorem ipsum dolor sit amet,
quisquam est, qui dolor ipsum qui dolor sit amet”.

row lorem ipsum | dolor | sit amet | quisquam | est qui
1 1 2 3 1 2 1 1 2

Table 2: One row with a textual feature presented as n-gram feature transformation.
Each new word in the n-gram dictionary adds a new feature and thus a dimension
to the data.

that are analyzed. One way to compress the dimensions is to use feature hashing for
n-gram features. [28] This means that instead of pure n-gram features representing
a single n-gram instance, we use hashed value of several n-grams thus reducing
the amount of features. Hashing can be done in different ways, for example by
multiplying each original feature together, or calculating a weight value based on
the frequency of each feature. As a drawback, the amount of information might also
get reduced as the data is “compressed”. The more dimensions are compressed into
hashing values, the more information is bound to be lost, but this way we can include
more features for algorithm training without significant resource demands. [29, 30]

2.7 Robotic process automation

Robotic process automation, or RPA, is used to automate mechanical tasks executed
on computer software. Usually it operates on the UI level and can be used to
repeat meaningful functions instead of mechanical actions. For example, with screen
recording macros, only mouse position at the screen and actual pressing of the
keyboard is recorded and repeated. RPA automation, however, is able to repeat
the functionalities those actions trigger, such as inputting text to a certain named
field on the UI, or logging in with a given username and password regardless of the
location of those fields on the layout. [31]

In Samlink, an RPA technology called UiPath is used as a base of RPA opera-
tions. A central coordinating system called “UiPath Orchestrator” supervises the
RPA processes. RPA process is executed by following an “RPA automation”, a

26

predefined operation instruction build by RPA developer. The software responsible
for the automation execution is called “RPA agent”. Agents are located in the
“workstations”, where a single agent is running in one workstation. Each agent
executes one automation at a time, given by the Orchestrator, and communicates
with Orchestrator during the execution. This hierarchy is visualized in figure 8.

Orchestrator

/ N4 Workstation

RPA automation execution

Figure 8: Hierarchy of RPA components explaining the terms and their relations.

2.8 Data sensitivity

During this study, it was necessary to make sure no sensitive data was moved out
of the production environment. This was mostly due to restrictions imposed by
GDPR. In order to maintain the data security, the data had to be anonymized
before it could be exported to the cloud environment. After anonymization, the data
would not include any information that can be connected to real individuals. Three
different anonymization methods were considered, which were pseudonymization,
k-anonymization and full anonymization.

27

Pseudonymization refers to a method where sensitive information is de-identified.
This means, that each sensitive piece of information is replaced with an encrypted
value so that no information is lost but a human cannot identify individuals when
reading the data. Encryption and de-identification could be reversed, i.e. data could
be re-identified, with a decryption key which tells a computer how to convert the
replaced value back to the original form. As machine learning algorithms do not
care about the meanings behind personal identification information, such as phone
numbers or addresses, pseudonymization would preserve the information in the data
unchanged for ML algorithms to use so that no information would be lost. [32]

As pseudonymization is a reversible operation with an encryption key, it is not
the safest way to anonymize the data because the encryption key leaking is always a
risk. K-anonymization is the next step in securing the data sensitivity. Excluding
all unique identifiers such as full name or social security number, information like
home street, age, workplace or last name are not on their own enough to identify a
certain individual, but combined they can single out a person. K-anonymization is an
unreversable anonymization approach where identifying information is generalized to
mask individuals into a crowd. With k-anonymization, an algorithm replaces single
informative details with more general variants, for instance, address to hometown or
age to age range. K-anonymization loses information as it cannot be reversed. If
personal information is essential for the use case of the ML algorithm, this method
weakens the algorithm results. [33]

Eventually, due to high customer data sensitivity and strict data safety policies,
it was determined that individual information in the log data used in this study was
not relevant for connecting the log events to technical support ticket timestamps.
Thus full anonymization was decided to execute on the log data. This way, each
personal information was replaced with a general token disclosing only what type of
information (phone number, email address etc.) was anonymized. Frankly, it is not
certain if identifiable personal data would have improved the algorithm results, but
because corresponding support ticket data was stripped from all other information
except timestamps, any possible connections between personal data in logs and in
tickets were lost nonetheless.

Data anonymization was executed in the production environment with PowerShell
script. Several predefined identification features were searched with regular expression
(or regex) patterns and replaced with default keys. Anonymization scripts and the
data format is described in more detail in the section 3.3.

2.9 Log data analysis and anomaly detection with ML

Using machine learning for log data analysis is not a new field of study. [34, 35, 36, 37]
The key issue tends to be the format of the log data which shifts the dilemma to
natural language processing. Some studies also combine anomaly detection using
machine learning to log data analysis. [38, 39] Comparing existing studies to our
case raises at least one major suggestion for improvement: log data refining.

When log data has a consistent format, multiple different algorithms can be
utilized for anomaly detection and log analysis. Log events can be clustered and

28

different types of events can be counted if the amount of types is finite and known. [38]

If training data already have information we wish to teach the algorithm to
forecast (i.e. data is labeled), combining the results of the log data analysis to
external features is more feasible. With labeled data, supervised learning methods
can improve the results of the algorithm forecast abilities. [34]

As explained in the section 3.1, data features connected to anomaly detection
results are pure datetime values. With more insight into ticket data properties than
just timestamps, ML algorithms could be able to extract more valuable information
from the log data.

29

3 Research material and methods

In this section we explain in more detail what the data used in the study consists
of and what methods were used in an attempt to answer the research goals. The
content of the section is briefly described below, after which the steps of the research
are explained.

The data in the research is mainly made of two parts. The most important part
is the log data produced by the numerous RPA processes. The second data part,
complementing the study, is the support ticket data written by clerks of customer
banks. In order to use the data safely in the cloud environment it was necessary to
sanitize the data from any sensitive information. This was done by anonymizing the
log data and using only timestamps from the support tickets.

After confirming the results of anonymization, the data was preprocessed into
a better format to make it more usable by algorithms. More processing was done
inside the pipeline as ML Studio offered several usable components for this but the
main cleaning was easier to execute in a local environment. This was also done with
PowerShell scripting.

The actual ML pipeline structure is discussed in the next section.

3.1 Support ticket data

Like all other software, RPA components fail from time to time. As described before,
RPA logs are verbose making error identification difficult. Due to that, it is not
feasible to create log parsers that would be able to identify critical errors from within
thousands of lines of log. When a critical error occurs causing the RPA process
to fail, the banking clerks need to finish the job that was left by the RPA robot
manually. Every time this happens, the clerks then send a support request ticket to
Samlink technical help desk and request a fix for the issue.

When clerks send the ticket to technical support, a verbose description of the
situation is written to help developers to identify the problem. This description often
contains sensitive end customer information like bank account details and social
security numbers. To avoid privacy issues when processing this data, it was decided
to use only timestamps of the tickets. The resulting data was practically a list of
date and time values. The issue is described further from a privacy point of view in
section 3.3.

3.2 RPA log data

Robotic process algorithms used in Samlink are designed to ease the workload of
bank clerks. RPA robots work on behalf of bank clerks executing routine tasks that
require mostly manual labor.

Like other software, RPA also produces log data during its runtime. As dozens
of RPA automations are running in several bank environments the amount of log
entries produced is also significant, up to over a million lines per week. This log data
is not in consistent structure as it is formed out of typical CSV data and injected

30

with even more inconsistent JSON data that varies in contents vastly. An example
of log data after the anonymization phase can be seen in the appendix B.

RPA log data is stored in an SQL database. The database is split in live production
log that is gathered for two weeks and then moved to an archive that has several
years worth of log. In this study we used archived data as it was easier to acquire in
one run without the need to merge different parts together. The archive also had an
amount of data that was considered sufficient for machine learning algorithm training,
with data entries spanning almost two and a half years and rowcount exceeding 80
million.

Samlink RPA logs have few standard fields. These are listed in table 3. The most
notable aspects here are the fields named message and rawmessage.

Message holds the short log message written by the RPA agent during automation
execution. This includes details about the issue, what part of the process failed, and
possible stack trace of the error.

Rawmessage is JSON-formatted representation of all the default features, including
the message and multiple other additional features that the RPA agent is able to
output regarding the log event. These additional fields are what vary from log entry
to log entry. Some of the possible fields are shown in table 3, but several other field
types exist. The JSON data in them can be nested in multiple layers, as seen in
appendix B.

Without rawmessage, the data was in pure CSV-format and could have been
more easily processable from the start. However, it was not certain that rawmessage
would not hold usable data for ML as in some cases the plain message-field did not
include all the most interesting keywords that were present in the extra fields of
rawmessage. Nevertheless, using rawmessage in anomaly detection posed another
problem.

When feeding the log data to the anomaly detection algorithm, it was crucial
that all the rows were as minimally unique as possible in order to use the pattern
finding abilities of the algorithm. Too unique data points would have made all
of them anomalies compared to each other. Because rawmessage included other
column data in a long text format, certain unique information such as fingerprint
and timestamp were necessary to remove from within the data manually, as they
could not be extracted easily with tools in Azure ML Studio during ML pipeline
execution. Thus, it deemed easier to preprocess the data with another script in a
local environment before exporting it to the cloud. The final script is presented in
appendix D. When training ML algorithm with rawmessage, timestamp and job
ID values were included retrospectively from their corresponding columns outside
rawmessage.

3.3 Data anonymization
Support ticket data privacy

Samlink handles highly sensitive banking customer data in its processes, such as
personal identification numbers, home addresses, email addresses and bank account

31

Field Contents Examples
organizationUnitld Samhnk organization 5)
unit
level Log level Information | Warning | Error | etc.
logType Type of log entry Default | User
timeStamp Date and time for | o419 49 10T03:00:01.6278373+03:00
log entry
fingerprint Unique identifier for | 1, 451984 agde-40a6-h571-y6a97f98a4e3
log entry
. Workstation name of
machineName the RPA agent W2490N101
Name of the RPA RPA-bank-task-application_Samlink
processName . .
automation Production
Identifier for current
jobld RPA automation 24a84531-010b-457f-90t1-5ayc98d 7b557
execution
Name of the agent
robotName executing RPA-BANK-1-1234
automation
machineld Workstation 1D 5
number
Short message Throw exception: Saldo ei riité |
message o
regarding the entry | Tarkistettiin A:n nimi
{ “message”: “Siirryttiin
Varallisuus-sivulle.”,
“level”: “Information”,
“logType”: “User”,
“timeStamp”:
“2019-09-10T03:00:50.6103121+03:007,
“fingerprint”:
“70f44345-22bb-46d£-885e-75f180fc4d48”,
JSON formatted “windowsldentity”:
message including “LOCAL\\T123456”,
most of the columns | “machineName”: “W2490N101”,
rawmessage « -
above and several processName”:

more fields regarding
the log entry

“RPA-bank-task-application_ Samlink
Production”,

“processVersion”: “1.0.7111.31245”,
“jobId”: “24a84531-010b-457f-90t1-
5ayc98d7b5577,

“robotName”: “RPA-BANK-1-1234",
“machineld”: 11,

“fileName”: “LisaaTiedot Talous”,
“logF__BusinessProcessName”:
“rpa-bank-011-JOB-valmistelu” }

Table 3: Log fields in RPA log data

32

numbers. All possibly sensitive data had to be removed before data could be
transferred out of the production environment and into cloud. Due to bureaucratic
reasons, technical support tickets were under more strict policies. Because of this,
they were allowed to be used in the research on the condition that no business critical
nor customer sensitive information was processed in the first place. The only way to
assure this, was to select solely timestamp fields from ticket data. Thus, no sanitation
for ticket data was needed as ticket data consisted of only a list of datetime values.

RPA log data sanitization

Information privacy is one of the key values in Samlink’s business promise as the
company develops high security banking applications and processes sensitive customer
data. Thus, several aspects were needed to take into consideration before log data
could be authorized for thesis study usage. To improve privacy, it was decided to
assume that personal customer details are not critical information for ML algorithm
training if the goal is to find possible problems in RPA runtime and not detect
individual customer related problems. Also, as mentioned in section 2.8, all customer
and user related information was excluded from the support ticket data, making
individual customer information redundant in the log data. Thus, it was not necessary
to achieve just adequate security by less safe and more effort consuming ways such
as pseudonymization or k-anonymization (explained in the section 2.8), which would
have also required strict inspections before the data could have been approved for
cloud processing.

During the beginning of this thesis study, several sensitive information types were
recognized from the log data, and all possible types and their different forms were
considered before anonymization script was approved to be used in the production
environment. Anonymization was executed by replacing sensitive information with
general pattern describing the replaced information type. With this, it was at least
possible to keep the information whether a log row had included customer sensitive
data, and what type of data was involved. Thus, it was theoretically still possible to
recognize repeating anomalies that had, for example, social security number included
in the log event. A list of considered sensitive info types, their examples, as well as
the values replacing the sensitive data can be seen in table 4.

A script searched for repeating patterns related to sensitive information types.
This was done with regular expression, or regex, searching. With regular expressions,
different repeating patterns can be extracted and replaced from the data. Each
sensitive data type has some sort of unifying feature, such as string length, number
of digits, or location of certain character.[40] Some types are clear and standardised
like social security number (6 numbers, -, '+’ or ’a’, three numbers and a number
or a letter), or credit card number (15-16 numbers), while with some other types it
may be hard to take all possibilities into consideration, like address (one or more
words, at least one number, possibly one letter or more in case of 'apartment’ or
’apt’, more numbers etc.). Still, most of the cases could be considered to a degree
that was deemed satisfying from a security point of view. All regex search clauses
are listed in table 5

33

Info type Example Replaced value Comment
Social security |1 5190 0123 10105051470101 Includes ', +’
number
and ’a’ format
Email author@thesis.fi EmailAddress0101
IBAN number |FI8612345600000123 1010IBANnumber0101 Only Finnish
format
BBAN number | o5 156 193 1010BBANnumber0101
with dash
Phonenumber, 1 g-0-194,567 1010PhoneNumberInt0101 | With or without
international .
whitespaces
E EZ?enumber’ 050-1234567 1010980230101 With or without
whitespaces or
dashes
Business 1D 1234567-8 1010BusinessID0101 Finnish format
Business 1D, | gy 045678 101086512350101
international
Business 1D,
. 0012345678 1010865123500101
int. zero form
Credit card | 1990191061682346 1010664900101
number
Windows . .
. K123456 1010WinID0101 Used in company
Identity
processes
Address, -
Teekkarikuja 1 a 42 1010AddressCommon0101 | Common street
common

name endings

Address, ZIP | Bulevardi 2 B 69, 00100 | 1010AddressZip0101 Disregards city
name after ZIP
Bank ID 12345678 10108426100101 Bank user ID
BBAN without| o4\ 500000123 101088420101
dash
Artificial 8123456789 101086512354970101 Used in RPA
business 1D
processes

Table 4: Information replaced with regex search from log data. Data values are
replaced with patterns with numbers or numbers and letters depending on the original
format in the data. Patterns are formatted uniquely so that they can be recognized
amongst the anonymized data, each starting with 1010 and ending with 0101, and
having a typewise identifier in the middle. With numeric patters, numbers are
selected as letter representations, like business ID = 8651235 (BUSINES)

34

Info type Regex
SSN ?7<![a-zA-Z0-9]) [\d 1{6}[-a+]7[\d 1{3}[\w 1{1}
(7:0{0}10{3}) (7! [a-zA-Z0-9])
Email [\ “"\s J+@[\ . \w -I*[\w]
IBAN (7:(?7<! [a-zA-Z0-9]) | (?<=\\\D)) (?:FI|£fi)
(7: ?\d){16}(?! [a-zA-Z0-9])
EEZ;N“”th‘ (?<![a-zA-Z0-9]) [\d 1{6}-[\d 1{2,8}(?![a-2A-Z0-9])
Phonelnt (7<! [a-zA-Z0-9]1)\+358(7: 7\d){8,10}(?! [a-zA-Z0-9])
PhoneLoc (?7<![a-zA-Z0-9-]1) [0] [\d 1{2,3}[-17
(?: 7\d){6,8} (7! [a-zA-Z0-9-])
Businessld (7<![a-zA-Z0-9]) [\d I1{7}-[\d 1{1}(?![a-zA-Z0-9])
BusinessIdInt | (?<![a-zA-Z0-9]) [a-zA-Z]{2}[\d 1{8}(?![a-zA-Z0-9])
Businessld- (?<! [a-zA-20-91) [01{2} [\d 1{8}(?! [a-zA-Z0-9])
IntZero
CreditCard (?<![a-zA-Z0-9-.1) [\d J{1}(?7: ?\d){14,15}
(7! [a-zA-Z0-9-1)
Winld (7<! [a-2zA-Z0-9]) [a-zA-Z]{1,2}[\d 1{6}(?![a-2zA-Z0-9])
AddressCom [*\s ""?,.]1*% ?(katultielkujalpolkulkaari|linjalraitti
|rinne|penger|rantalvayla|taival|tanhua|portti
|verdjdl|laitalreunalsyrjéalaukioltori|laituri|tunneli)
(\d 1{1,3}(?[a-zA-Z.]1{1,4} ?[\d 1{0,31)7(?!\w)
AddressZip (7<=\s)I\S 1x [\d 1{1,3}(?[a-zA-Z.]1{1,4} 7
(\d 1{0,3})7?(\s |,\s)[\d 1{6}(?!"\w)
BankId (?7<![a-zA-Z0-9-]) [\d 1{8}(?![a-zA-Z0-9-])

BBANnoDash | (?<![a-zA-Z0-9]) [\d 1{14}(?! [a-zA-Z0-9])
ArtifBusiness-
Id

(7<![a-zA-Z0-9]) [89]{1}[\d 1{9}(?![a-zA-Z0-9])

Table 5: Regex search patterns for sensitive info finding. Most of the regex patterns
start with negative lookbehind and end with negative lookahead so that found pattern
is not part of another string. Order of the regex patterns as listed on the table is
important as some patterns give overlapping matches so we wish to recognize certain
patterns before others.

35

As the production environment is built on a Microsoft Server based solution, and
because it was highly unrecommended to install additional software to the production
server, data acquiring and anonymization tools were chosen based on what was
already usable in the RPA production environment. Microsoft PowerShell offers
sufficient tools for database SQL querying and stream editing. The amount of data
was significant which made straight file editing impossible due to the local machine
memory limitations. Thus, stream editing was necessary for finding and replacing
sensitive information from the data.

Anonymization took a good portion of the research time as processes were slow,
the amount of data was huge and multiple re-runs were needed before the results
were deemed adequate. The final anonymization script is introduced in appendix C.

3.4 Azure cloud resources

Azure provides a vast set of tools and resources for different kinds of cloud projects.
Resources needed for Azure ML Studio usage depend on the subscription used and
the security restrictions set by the subscription manager. When starting this study,
due to these restrictions, all resources used for ML training in this project needed to
be inside the same virtual network. The Azure ML Studio environment could be
opened from any network, but most of the features were unavailable if the computer
browsing web UI of the studio was outside this virtual network. Thus, a virtual
machine had to be acquired as Azure resource from within the same network as other
resources and ML Studio UI had to be opened with the browser on this machine.
Later on it was found, that Azure Machine Learning Workspace networking feature
could be configured to allow public access making it possible to access ML Studio Ul
from all networks.

Resources needed for Azure ML Studio usage and their relations are shown in
figure 9. This is the configuration required with the existing subscription models of
Samlink, albeit different configuration combinations could be possible depending on
the subscription and network restrictions. The most crucial parts were the storage
account, private endpoint and virtual network.

The storage account worspacemlrpa was linked to the Azure Machine Learning
workspace. This storage is the main disk that stores all the input data used for
algorithm training as well as the result data from said algorithms. Virtual network
vnet-test-machine-learning is the mentioned network that includes both ML workspace
and the virtual machine used to access the ML Studio web UI. Private endpoint
endpoint-ml-nic01 acted as a final link between ML workspace and the virtual
network.

3.5 Azure ML Studio

The actual machine learning pipeline design and algorithm training is done with ML
Studio portal, which is a graphic web user interface. It is a separate tool usable outside
the usual Azure environment after configuring the workspace in Azure resources.

36

smit-test-ml-srv01

[+ W <ds % >

smit-test-ml-srv01329 o vnet-test-machine-learning-b... endpoint-ml-nic01 ~ test-machi

\ Bastion Privale endpaint

LT]

smit-test-ml-srv01-ip vnet-test-machine-leaming-ip vnet-test-machine-learning workspace-ml-rpa

endpoint-mi-nicO1.nic.d1d3b. endpoint-ml-rpa

Public IP address Public IP address Virtual network Azure Machine Learning

|
3 =

nsg-smit-test-m workspacemirpa3773288696
Network security group Storage account

Figure 9: Azure cloud resources needed and their relations

Inside ML Studio, there are two important resources needed to set up before pipeline
designing can start.

First, the data have to be registered as an usable asset. Multiple pre-existing
data sources are available to choose from online sources, and the designer can also
choose to use other accessible web file sources. In addition to these, datasets can be
imported from Azure datastore accounts. Data can be uploaded from a local machine
through the Studio UI so it is saved to the chosen datastore. As datastores are
usable with all Azure service resources, it is possible to use data gathered from any
other Azure service for machine learning training. In this study, the data that was
anonymized and preprocessed in local machine was then imported with a separate
Azure software to the storage account and registered as an ML dataset from Studio
UL

In addition to the data we used to train the algorithm, we needed to set up
a computing instance in Azure ML studio. Some predefined resource limitations
affected the computing instance choosing. After encountering some memory related
issues in pipeline training, we were encouraged to pick memory prioritized instances.
Single computing instance did not work, but we needed to choose a computing cluster
instead to be able to run an ML training pipeline. After choosing suitable virtual
machine properties for compute cluster instances, it is possible to set a number of
nodes. Each of these nodes are a copy of the virtual machine chosen in the previous
step. If more than one node is chosen, the computing cluster scales to use more
nodes depending on the ML training demands.

37

For the purposes of this study, we chose to use maximum two nodes. The virtual
machine properties chosen were 4 core machine with 28 GB of RAM and 200 GB of
disk space.

38

4 Machine learning pipeline structure

The full component chain from input to output with algorithm training and result
validating is called a machine learning pipeline. In this section, we discuss how
the ML pipeline was created in Azure ML Studio. Several ML algorithms were
compared in order to find the most feasible set for our goal in mind. ML training was
organized in two different phases in order to find the relation between log anomalies
and technical tickets. Although, the Azure environment and ML Studio requirements
were the objectives of the study and therefore part of the outcome of the results,
these results were also a prerequisite for solving the final objective considering the
possibilities of the ML algorithm. Therefore, the resulting Azure resources and ML
Studio pipeline components are demonstrated in this section.

Results of the trained algorithms were validated against newly acquired production
data in order to estimate how well the initial goals of the study were fulfilled. These
results are presented later in the section 5.

Azure ML Studio makes ML pipeline creation easy and comparing different
methods and algorithms effortless. Nevertheless, with a hybrid approach having two
different phases, and result comparison being done against the anomaly hypothesis,
the pipeline drafts started to accumulate in content.

When starting the ML pipeline testing, the initial plan was to feed the log
data to the anomaly detection algorithm and try to get some sort of estimate of
possible anomaly count. This plan had several problems. First, as stated, logging is
very abundant and several thousands of rows is logged during a single day. Some
encountered errors are not critical and RPA agent is able to recover from them and
finalize the initial task. This means, that errors which could be deemed anomalous
may not result to a ticket in the end.

In addition, one single error case noticed by bank clerks may be linked to several
problems in runtime, meaning that one ticket might be linked to multiple, dozens, or
even hundreds of log rows.

Two different algorithms were needed. In phase 1, the algorithm defines how
likely one datapoint, or log row, is to be considered an anomaly. In phase 2, another
algorithm aims to predict how many tickets are expected to be received within a time
frame. This dual algorithm utilization is referred to as a hybrid machine learning
approach. [41]

4.1 Hybrid machine learning

Hybrid machine learning (HML) refers to an ML technique where two or more ML
methods are combined to overcome the limitations of or to boost the estimation
capabilities of a single method alone. [42] Hybrid machine learning is not a rare
technique in the ML field. [43, 41, 44, 45, 46, 47, 48, 49] In this study, we combine
a PCA-based anomaly detection algorithm with a regression algorithm in order to
amplify the prediction powers of our ML algorithm when trying to determine the
possible ticket count based on log events.

We use two different algorithms and two particular data sets in two separate

39

phases as visualized in figure 10. The results of the first ML algorithm are combined
with the second set of data, and this combination is used to train the ML algorithm
in the second phase. In order to clarify whether a hybrid approach is suitable for the
current study problem we will compare the results of the hybrid ML technique with
a single ML algorithm usage.

— >
Data set 1 Data set 2

ML algorithm
1 Data
combination

A«

ML algorithm
2

Figure 10: Simplistic example of a hybrid machine learning model. The first algorithm
learns from the initial data, and the results are used with a second data set to train
another algorithm.

It is not feasible to use anomaly detection on its own to estimate ticket amounts
as plain sum of anomalies detected is not correlating with tickets received. Using pure
statistical values of the log data such as log rows per day would possibly give some
results with a single algorithm, but only if the amount of log events correlates strongly
with tickets received. We can, however, amplify our ticket estimating algorithm with
anomaly feature values. As we first count the anomaly numbers with the anomaly
detection algorithm and use the statistical features of the results in another algorithm,
like regression algorithm, we get more relative information to use when creating the
final ticket number estimations. This is explained in more detail later in section 4.3.

4.2 HML phase 1: PCA-based anomaly detection
PCA-ADA input feature formatting

In Azure ML Studio, the only selectable module for anomaly detection is the PCA-
based anomaly detection algorithm (PCA-ADA), which is explained in section 2.4.
However, with textual input like logs it can be used in at least two ways.

First, input data can be fed to the algorithm trainer as is, letting the PCA-ADA
component do the work without further modifying the log rows. This way, the

40

component tries to recognize the anomalies based on all the information included in
the row. Practically this means, that the component processes data in textual format
making each row in the input a feature as a whole to consider. As we discussed in the
section 3.3, unique values should be removed from the log rows and the data should
be somewhat clean. PCA should be able to find similar values and create anomaly
score with purely textual features. However, it is probable that with a single word
change on a message feature, PCA defines two rows as completely different.

Second option is to convert the textual features into numerical features. This
can be done either with the “Extract N-Gram Features from Text” component, or
the “Feature Hashing” component which uses n-gram feature extraction behind the
scenes. With n-gram feature extracting, as explained in the section 2.6, each word or
n-gram is converted to a number of said instance found on the row being processed,
and each row can be presented as a sequence of numbers indicating the number of
those features.

An N-gram feature can in addition have a weight based on the frequency the
n-grams appear in the entire data. Different weights usable in Azure ML component
are listed in table 6. During this study, only binary weight was used, so it is possible
that improved results could have been acquired with a different weight method.

N-gram weight Explanation

Binary Weight Assigns a binary presence value to the extracted n-grams.
The value for each n-gram is 1 when it exists in the docu-
ment, and 0 otherwise.

TEF Weight Assigns a term frequency (TF) score to the extracted
n-grams. The value for each n-gram is its occurrence
frequency in the document.

IDF Weight Assigns an inverse document frequency (IDF)
score to the extracted n-grams. The value for
each n-gram is the log of corpus size divided
by its occurrence frequency in the whole corpus.
IDF = log of corpus_size / document_frequency
TF-IDF Weight Assigns a term frequency/inverse document frequency
(TF/IDF) score to the extracted n-grams. The value for
each n-gram is its TF score multiplied by its IDF score.

Table 6: Statistic metrics of the time frame compression that are considered possibly
useful for ML algorithm. [50]

As stated, a vast dictionary of n-grams demands resources from the ML computing
instances as every new n-gram in the dictionary adds another column to the training
dataset. To reduce the amount of memory needed, the “Feature Hashing” component
can be used. By hashing the n-gram features, the amount of resources needed by the
pipeline can be significantly reduced. Feature hashing allows us to use the entire
amount of data as an input if feature hashing parameters are tuned enough. However,
as discussed in the section 2.6, the greater the compression is, the more information
is lost to reduce the need for resources.

41

Before the n-gram operations, the textual data can be preformatted in Azure ML
Studio with “Preprocess text” -component. This component includes several options
to choose from in order to clean text to more processable form. Most useful options
to select from are stop word removal (which removes uninformative words such as
“the”, “is” and “and”), lemmatization (which converts words to their canonical form,
for example “bigger mice eating” to “big mouse eat”), detect sentence (which inserts
a sentence boundary symbol to help algorithm text analysis), text case normalization
(which normalizes all characters to lower case to reduce the number of different words
when first letter is capitalized), and various character removals (which range from
number, special character, and duplicate character, to url and email address removal
possibilities). Text preprocessing usually helps to reduce the number of features
when text is used in n-gram feature extraction and feature hashing. Most of the
options, however, do not work well with other languages than English, which might
create issues with this study case as logs contain a mixed amount of English and
Finnish words. [51]

In the end, the need for memory proved problematic and pure n-gram feature
extracting forced us to reduce the data size to only 2% in order to finish the algorithm
training pipeline. This amount was considered to be too low for reliable algorithm
training results. Still, all variations of input feature formatting were tested to see
how much possible shortcomings would affect the results. More about the memory
issue is discussed in the section 5.1.

PCA output and anomaly probability

The output values of the PCA-ADA component, as explained in the section 2.4, are
normalized so the values range between 0 and 1. This anomaly probability value is
the main output of hybrid ML phase 1. Based on our initial hypothesis, that each
anomalous event in the log is linked to a real life support ticket received, the bigger
a single anomaly probability value is for a log row, the more likely is that the row is
related to a ticket inducing event. Further processing steps of the output values are
discussed later in the section 4.3.

Unconventional training approach

As stated in section 2.1, the approach we attempt in this study is, if expression is
allowed, unorthodox. Typically, the data points used in ML algorithm training and
validating should always be different. Acting otherwise leads to algorithm processing
with same data it was trained with, thus creating a situation where algorithm already
knows what to do with the current data point. If the results were validated after
this the algorithm would get an unreliably good score as it had the validation data
already in the training phase. This could be compared to giving some right answers
to students during a test and scoring test results as if no help was given. However,
due to the nature of the study problem and contents of the data, it was decided to
test whether bending this rule would provide better results in algorithm training.
The large amount of data was enough to cause issues with memory. Although
this problem was succesfully circumvented, the hybrid approach and the time frame

42

compression (discussed later in section 4.3) resulted in a significant data loss in phase
2. As a general rule of thumb in ML training, only 20-30% of the data is used to
validate the algorithm. With the hybrid ML approach, the validation results in phase
1 are what actually form the data used in phase 2. This data is further compressed
to time frame groups leading to only a few dozen data points in phase 2 ML training
compared to millions of rows in phase 1.

Because of the way the PCA-based anomaly detection algorithm works, the
over-lapping data points are not as big of an issue as it would be with other types of
algorithms like regression algorithms. This is why we could use part of the data for
training the anomaly detection algorithm as usual and then use all the data available
for validation without overfitting the algorithm, which happens when algorithm fits
to the training data well, but cannot generalize with new data [52]. Also, because
the main forecasting functionality comes in the phase 2, overfitting in phase 1 may
not cause issues.

To verify if this unconventional training method gives good results without
issues, the trained algorithms were tested with new production data that had zero
overlapping data points with training and validation data. This training method was
also compared to a traditionally trained algorithm to see the differences in results of
both training styles. This way we were able to compare different training approaches
to determine the best overall pipeline structure.

Kind of informal mention considering the traditional training approach in our
study case is the data splitting of the log data for algorithm training. Because of
the hybrid model, and the data consisting of log rows, we cannot make a random
split for the training and validation data as is usually done. Purely for training the
random splitting can be done, but if data in phase 1 is split randomly for validation,
some anomalous rows could be skipped from a time frame that would be crucial
information for the estimations in phase 2. This is why we must make sure the
possible data splitting for validation data is chronological in phase 1.

4.3 HML phase 2: Ticket count estimation with regression
Input data random delay and time frame compression

As mentioned previously in section 1, it takes time for a bank clerk to notice the
error in the RPA process, send a technical support ticket considering the issue, and
for the support team to redirect the request to the corresponding developer team. As
several steps of human interaction and workday schedules are in between the event
of logging and ticket receiving, the random delay of such may span from hours to
days. Random delay in input data features is not an unusual aspect in time-series
forecasting. Time-series in the context of ML refers to data features that vary over
time and can be affected by past values. [53] As an example, an ML algorithm could
try to predict future weather based on measured temperature and air pressure. Both
these features change over time and also affect their own future values.

This study, however, is not about time-series because the majority of the log rows
are not affected by previously logged events. As random delay of such does not seem

43

to be trivial to take into account with ML algorithms, a simple method to solve this
was used where log rows were grouped by time stamp into certain time frame groups.
We call this method “time frame compression method”.

Time frame compression means, that in order to eliminate the effects of random
delay we compress some features into a certain time frame at least as long as the
longest estimated delay. Simply put, if we count possible anomalies during one hour
of log, we cannot compare this number to actual tickets received at the same hour
or the next. What we can do, with time frame compression, is that we count some
statistical values of anomaly estimates, for example, the mean and median values
of a week, and then compare these numbers with the tickets received during the
same week. Statistically important and thus compressible features of a time frame
were determined to be the log row count, amount of unique job IDs, and anomaly
probability metrics.

The amount of log rows describes how many logged issues occurred in a time frame.
Alone, this feature may not give much insight as the amount of logs is possibly not
linearly comparable to the amount of tickets received. Combined to other statistical
metrics it may, however, provide additional value for ticket forecasting. Job ID is the
identification information of a specific RPA automation execution run. It means, that
the job ID is not unique for each log row, but it binds together all the log entries on
the same RPA automation execution. By counting the amount of unique job IDs in a
time frame we can get insight about the amount of automation jobs executed during
the time frame. This metric is important with the total row count: low number of
unique jobs with high number of total rows indicates that plenty of loggable events
and possible errors happened during the time frame, whereas high number of unique
jobs combined to low number of rows imply that not much happened (or perhaps
executions were completely crashed).

By the original hypothesis, anomalies in the logs are linked closely to the support
tickets received. The anomaly detection algorithm produces a probability value of
how strongly a row is considered to be an anomaly, thus, the mean and median
values of the anomaly probabilities in a time frame indicate how anomalous all the
executions within a time frame have statistically been. However, when compressing
the anomaly probability metrics in a time frame, some information is bound to be
lost. The mean and median values do not provide information about the anomaly
probability value distribution. There may be few very high values and a lot of low
probabilities, and it would lead to the same mean value as if there were a lot of
slightly higher probabilities and just few very low values. By adding more statistical
values we can reduce the loss of information caused by time frame compression. If
the original hypothesis is correct, the most relevant anomaly values are the highest
anomaly probabilities. Thus, calculating higher quantiles and the amount of values
exceeding them should improve the estimation abilities of the algorithm.

In table 7, all the statistic metrics considered interesting and valuable from time
frame compression of the log rows are listed with short explanation. In the pipeline,
the statistical values are calculated using the R-script executing component. An
example of such script executed by the “Execute R Script” component is presented
in appendix E.

44

Statistic feature Explanation (in time frame)
LogRowCount Number of rows/instances overall
UniqueJobIDs Amount of unique job IDs
AnomalyProbabilityMean Mean value of anomaly probabilities
AnomalyProbabilityMedian Median value of anomaly probabilities
AnomalyQuantile90 90-quantile value of anomaly probabilities
AnomalyCountOverQ90 Number of instances with anomaly probability
over 90-quantile

Table 7: Statistic metrics of the time frame compression that are considered possibly
useful for ML algorithm.

The result values of the anomaly detection algorithm are time-frame-compressed
along with the technical ticket timestamps, which form the second part of our data.
The timestamp data, however, is compressed simply into a count of tickets received
in the defined time frame. Now we have a comparable feature that is usable by
regression algorithms.

Regression algorithm options

Azure ML Studio has six usable regression algorithms. One of them, Fast Forest Quan-
tile Regression, is used to explain the distribution of the value being predicted.[54]
In our case, however, this does not provide any use for us as we are predicting the
ticket count per time frame. The distribution of tickets within each time frame is
irrelevant.

The remaining five algorithms are presented below:

1. Linear regression [55]

2. Boosted decision tree regression [56]
3. Decision forest regression [57]

4. Neural network regression [58]

5. Poisson regression [59]

Linear regression is the simplest of the algorithms, and even though it can be
easily explained with the least square principle described in section 2.3, the linear
regression component is capable of more advanced methods, such as gradient descent.
Poisson regression works only for Poisson distributed data. As the distribution of the
anomalies or ticket inducing log events is not certain, we cannot rule this method
out before seeing the results.

The other components with tree or forest in their name are based on the same
algorithm model called decision trees. Decision trees are models which run a series
of simple tests for all data points in each branching node. The data is moved on
like water along the tree from trunk to branches until it reaches the leaf node which

45

marks the decision-making point. When multiple trees are placed in a series, the
decision tree becomes a forest. [57]

Neural network mimics the way the human brain operates. Multiple layers of
neurons form a network, where data is passed to the next node for further processing.
Unlike with decision tree nodes, neurons in neural network do not form separate
branches, but each node can be reached via multiple paths. [9]

All of these regression algorithm models were tested and their results validated
with new data in order to find the one with the most promising results.

4.4 Pipeline branching

In order to find the best possible combination of components, all different combinations
must be compared. As the pipeline is structured in a tree-like flow, each node that
includes more than one possible choice diverges the pipeline into branches. Several
diverging points have been mentioned before in this study, and in this section we
join the information together.

First, the error message used to calculate the anomaly probability of a log row
had two options. We could either use simple message, or more verbose rawmessage.
This textual data could be fed to the ADA-component in several forms. Most
straightforward way was using textual data without any preformatting or modification.
Text could also be run through the “Preprocess text” -component. N-gram features
could have been extracted from the original or the preprocessed text and these
features could have been used instead. Instead of n-gram features, the textual data
could be converted to numeric also with the “Feature Hashing” -component.

After getting the ADA-component results, phase 1 is finished. At the beginning
of the next phase, the anomaly probabilities were compressed with R-code or SQL
query. In this phase, branching of the pipeline was due to comparing results without
the anomaly probability values calculated in phase 1, and then utilizing different
regression algorithms in phase 2. In practice this means that in order to validate the
results against our initial hypothesis, we used pure statistical log data, such as row
count and unique job ID count without anomaly probabilities, to determine whether
anomaly metrics provided any insight regarding the ticket data. When using n-gram
features or hashed features, these additional column features were also included for
this comparison, as forming them does not depend on the anomaly properties of the
log instance.

Each branching step, or layer, multiplies the amount of comparable values used
in final comparison that would determine the best possible pipeline combination.
These layers are simplified in table 8.

The divergent count implies the number of branches diverging from the previous
component. The total count of branch ends, or leaves, would then be the multiplication
of all divergent counts, totaling to 240 comparable pipeline combinations. Moreover,
n-gram feature extraction and feature hashing have several tunable parameters that
strongly influence the end results of the algorithm training. To reduce this amount
when considering the best possible pipeline, we simplified this by narrowing down
the options based on initial test run results of some of the divergent options.

46

Branching node Options Divergent
count

Input text column message 2
rawmessage

Text preprocess Yes 2
No

.) N
Numeric conversion © 3

N-gram Feature
Feature Hashing

ADA training Unconventional 9
Proper

Validation without Yes 9

anomaly metrics No

Linear regression
Regression algorithms Boosted decision tree regression)
Decision forest regression
Neural Network Regression
Poisson regression

Table 8: Pipeline divergent layers

For example, n-gram feature component suffered greatly from the memory problem
(which we discuss more in section 5.1), and the data amount that the “Extract N-
Gram Features from Text” -component was able to handle comprised of only 2% of
the original data. This was deemed as too small of an amount for training an ML
algorithm as it is extremely likely that with 98% of the data skipped, some possibly
relevant rows for the ticket anomalies would also get trimmed out.

The flowchart of pipeline with branching options visualized is illustrated in
figure 11. The final pipeline structure used for result acquiring can be seen in the
appendix A.

4.5 Comparable metrics

In previous sections we have discussed different approaches that could be used to get
the best results from the ML training. In order to find the best possible combination
of components, we must compare different results, and for this we need comparable
metrics. After training, the Azure regression algorithms are scored with validation
data. The final output from this is a numeric Scored Labels feature. In our study
case, this value is what the algorithm estimates the ticket count on the time frame
to be. Next, the “Evaluate Model” -component calculates a few evaluation metrics
to be used for result comparison. These metrics for regression algorithm are listed in
table 9.

Our goal is to find a connection between the log anomalies and the ticket time-
stamps. Our initial hypothesis suggested that the most anomalous events in the
logs would be more related to the ticket events than other rows. By this logic,

47

HML Phase 1 HML Phase 2

Message @'ﬁ
Rawmessage

i

-

Log archive Input text column
data

N-Gram Feature Extractiol

G {dﬁa{ ‘ | T jgd@aﬁi:m
Feature Hashing PCA anomaly detectio Model score Time frame compression Regression algorithm Model Is re and
n
Ticket timestamp

data

No preprocessing

Figure 11: Pipeline flowchart with branching steps illustrated. HML phase boundaries
are made visible for clarity.

we compared the algorithm evaluation metrics with the metrics produced by the
neighboring pipeline branch where anomaly probabilities had been removed. The best
algorithm should be found in a branch where the evaluation values are significantly
better than the neighboring branch from which the anomaly values have been
removed. This proves, that the anomaly probability values improve the algorithm
estimations, which indicates that the hybrid algorithm combination has indeed found
the connection between anomalies and ticket timestamps. This will also be our
logical basis when selecting certain algorithms for further tests.

48

Name of the metric Explanation
Mean Absolute Error (MAE) | Measures how close the predictions are to the actual
outcomes; thus, a lower score is better.

Root Mean Squared Error

(RMSE) Creates a single value that summarizes the error in

the model. By squaring the difference, the metric
disregards the difference between over-prediction
and under-prediction.

Relative Squared Error

(RSE)

Normalizes the total squared error of the predicted
values by dividing by the total squared error of the
actual values.

Relative Absolute Error

(RAE) The relative absolute difference between expected

and actual values; relative because the mean differ-
ence is divided by the arithmetic mean.

Coefficient of Determination

(CoD)

Often referred to as R?, represents the predictive
power of the model as a value between 0 and 1.
Zero means the model is random (explains nothing);
1 means there is a perfect fit. However, caution
should be used in interpreting R? values, as low
values can be entirely normal and high values can
be suspect.

Table 9: Comparable metrics provided by “Evaluate Model” component for regression
algorithm.[60]

49

5 Results

This section presents the results of the HML pipeline combinations. The values of
algorithm evaluations are compared and the results are judged. Before that, we
discuss the encountered memory issue that affected our pipeline component choices.

After presenting the results, the sensibility of the outcome is evaluated and
suggestions for improvement are made.

5.1 Memory issues and limitations

Memory is a crucial resource in ML training. Algorithms take multiple steps while
iterating the data and intermediate results are stored in the RAM rather than on the
disk. While building an ML pipeline in Azure ML Studio, a memory issue emerged
that affected several components and caused serious limitations in terms of usable
components and data size. Due to the time limits of this study, this issue was not
resolved and the problem causing it was not found. As several conditions related
to the environment costs were already issued by the company, we could not acquire
more expensive computing instances with more memory capacity to confirm whether
the issue was related to compute instance property limitations.

In order to complete some of the ML pipeline runs the data amount had to be
reduced to 600 megabytes. This was considerably less than what was assumed to be
sufficient for reliable results, as this size of data would cover just a few months of
logging. To increase the time span of log data, it was decided that the info-type log
messages were to be trimmed from the data. This way we were able to reduce the
data to 8.6 million log rows which was about 10% of the original data size. Before
the final cleaning operations, the data took 8.1GB of disk space, and after cleaning
the rawmessage-field with the script in appendix D, the final size of the data on the
disk was 6.6GB. Even with this data size, some Azure ML components still ran into
memory issue and we were forced to choose components that were able to handle
these data amounts.

One of the most sensitive components for this issue was the n-gram feature
extraction module. As we explained in section 2.6, each new n-gram or word creates
a new column in the data. This module suffered greatly from the memory exhaustion,
especially while processing rawmessage which included more data in the JSON
structure than the pure message-field. With rawmessage, n-gram feature extraction
was able to handle less than 1% of the data amount, resulting to more than 1000
columns of n-gram feature columns. With message data, the situation was just
slightly better, as the limit of data amount was at 2%.

The feature hashing component was able to process more data than the pure
n-gram feature extracting module, but this required the compression level to be quite
high. The main parameter to tune in feature hashing was the bitsize of the hashing.
The smaller the hashing bitsize was, the greater the level of compression was, which
resulted to more lost information. In order to utilize this module at all, the hashing
bitsize had to be set to 7 which produced approximately 130 hashed feature columns.

With some component combinations, additional data split modules were needed

50

in order to finish the ML pipeline. For example, with the rawmessage-data, feature
hashing and unconventional training, the validation data had to be trimmed to 70%
so that the model scoring could be executed.

5.2 Algorithm estimation results

Based on the first pipeline experiments, the Decision Forest Regression algorithm
gave the most promising results. For this reason, the values listed in this section
are based on the use of this algorithm unless otherwise stated. However, this first
impression was a misinterpretation, as the final results show. For unknown reasons,
when time frame compression was carried out with SQL queries instead of R-script,
the results were considerably better. However, these results could not be relied on, as
further investigation showed that the time frame compression was done incorrectly.
This was verified by calculating the total number of log rows and comparing it to the
sum of the line counts in all time frames. As something did not work as intended
with SQL queries, the SQL-based time frame compression was decided to reject. It
was also much easier to include more statistical metrics with R-scripting than with
SQL queries.

As explained in section 4.4, the number of pipeline component combinations to
compare was significant. Initial experiments were decided to run with a few basic
component combinations and select the most promising branches to continue with.
For this reason, pure n-gram feature extraction was rejected in the final analysis
because the memory issue greatly affected its reliability in terms of the amount of
data. Feature hashing, however, could be included. The amount of data was seen
sufficient to consider the results reliable, although, to make this possible, a lot of
information was lost due to the level of compression used.

In table 10, the final results of the pipelines using Decision Forest Regression
algorithm in phase 2 are listed for comparison. When interpreting the comparison
metrics, the focus was on the coefficient of determination (CoD-value), mean absolute
error (MAE-value), and their difference with the corresponding metrics in cases
where the anomaly probability value was omitted from phase 2. Like we explained in
section 4.4, we assumed that anomaly probability values calculated by the anomaly
detection algorithm provide valuable information for ticket count estimation. Thus, if
these values are removed before phase 2 algorithm training, the estimation capabilities
of the algorithm should weaken. Hence, we decided to experiment more with the
pipeline component combinations that resulted in noticeably better results than their
anomaly-probability-omitted counterparts. As mentioned in the previous section,
with MAE smaller is better, whereas with CoD bigger is better.

As highlighted in table 10, the most promising results were achieved by using:

» message data, feature hashing and proper training

» rawmessage data and unconventional training

o rawmessage data and proper training

o rawmessage data, preprocessed, proper training, and

« rawmessage data, preprocessed, unconventional training.

ol

Next, these chosen combinations are tested with different regression algorithms in
phase 2.

In table 11, we can see the results of different regression algorithms with message
data and feature hashing. However, as the results indicate, comparison metrics do
not improve with different algorithms. Thus, Decision Forest Regression is selected
for the final validation with fresh test data.

With rawmessage, we were unable to execute tests with fresh data because the
model scoring module failed with an error, stating that “Number of unique values
in column: ‘rawmessage’ is greater than allowed”. This happened even though the
rawmessage field was cleaned from the unique data values such as timestamp and
fingerprint. For this reason, we could not acquire test results of pipeline component
combinations that did not include rawmessage preprocessing. With text preprocessing,
this issue did not occur.

As seen in tables 12 and 13, Decision Forest regression gives the most promising
results when using the rawmessage-column, with or without text preprocessing. Thus,
the initial component combinations were selected to further experimentation.

The final testing was executed with freshly acquired production data. In the end,
only three of the most promising pipeline component combinations got tested in this
phase. The results are listed in table 14. As seen from the final comparison metrics,
the results were not convincing. Coefficient of determination was a negative number
in each case, meaning that our ML model did not find any sensible relationship
between log data and ticket timestamps. The negative value also indicates, that
even a random model would have performed better in ticket count estimation than
our trained algorithms. Further examination of the score values behind these results
reveal a possible reason for this. In case of preprocessed rawmessage, proper training
and Decision Forest algorithm, the MAE-value was 0.5277 and CoD-value 0.79976.
Without context, these values would have been excellent, meaning that an average
error in ticket count estimations would have been slightly over 0.5 within a time
frame. However, because the memory issue forced us to trim the data amount, and
the time frame compression condensed the training data in phase 2 even more, the
final evaluation was executed with just 3 rows of data. Obviously, this is not a
sufficient amount of data to get reliable results.

After considering all the results, it was determined that our initial goal to find a
connection between log anomalies and technical ticket timestamps did not succeed.
Even though we were not able to find the connection with the methods used in this
study, it should not be ruled out whether this connection exists or not. Our final
verdict is that further research is needed.

5.3 Improvement discussion

This research encountered several problems that could not be anticipated beforehand.
Most notable of the problems was the memory issue with Azure ML modules. This,
along with the bureaucratic challenges regarding the data security, forced us to limit
the study scope in regards to the schedule of the thesis. Thus, several possibilities
could not be examined thoroughly.

52

In order to use the results of this study in production, the ML pipelines with
trained algorithms should be published as online endpoints. The data in production
needed a great deal of processing before it could be exported to the cloud environment.
To be able to use live production data for real time ticket estimation, a solution for
data processing and exporting would be needed.

The data format proved challenging, not only because of the mixed type of data
that included both CSV and JSON, but also because of multiple different types of
sensitive information that had to be taken into account. With more simple and
consistent log formatting, further insight into the data could have been acquired.
One major improvement could be the possibility to utilize the One-Class Support
Vector Machine. This, however, would have needed a manually constructed dataset
including only “normal” log events, or such events that can be reasonably assured
not to be related to the ticket inducing issues. With more carefully preformatted
data, more informative log metrics could be found which may have proven useful for
algorithm estimations.

The time frame compression inevitably lost some information. We attempted
to minimize the drawbacks by calculating multiple statistical values along with the
compression. Different approaches could still have been experimented with. One
possible approach could be calculating anomaly probability metrics per job ID to
increase the understanding of anomaly distribution inside time frames. Due to the
effects of the working week on the tickets, shifting the time frames from Monday-
Sunday to Saturday-Friday could also change the results, as it is presumable that
tickets received early on Monday are related to issues occurring during the weekend.

The original hypothesis was that anomalous events in the logs were clearly linked
to the tickets received. However, as memory errors due to the size of data forced us
to skip info-typed rows, it is possible the data anomalies did not reflect to the tickets.
As stated before, multiple error lines in the log may be linked to a single issue, which
could make the ticket inducing events more common log feature. Thus, it could have
been possible to get better results by tuning the statistical values that were used in
a way that more common error messages would have been taken into account.

In this study, we decided to skip some corners and selected pipeline component
combinations to continue based on the initial results of Decision Forest regression
algorithm. The other algorithms were tested with the combinations that worked
best for the Decision Forest regression. It is possible that with different algorithms,
other component combinations would have worked better. Additionally, all of the
algorithms have multiple tunable parameters that affect the results greatly. Most
of the algorithms, however, were used with default parameters to save time and
computing costs. Model hyperparameter tuning and parameter combination testing
could still provide further results.

Finally, without the memory issue limiting our data amount and component
selection, n-gram feature extraction could have been utilized to full extent. Other
data preprocessing methods were bound to lose valuable information, and anomaly
detection from the textual features in this study case was not possible with the
algorithms available.

93

Component combinations with Decision Forest regression

Combination MAE |RMSE | RSE |RAE | CoD
Msg PropT 3.6875 | 4.2886 | 1.6966 | 1.3169 | -0.6966
Msg PropT NA 3.5125 | 4.2718 | 1.6834 | 1.2544 | -0.6834
Msg UnconT 3.5236 | 4.3578 | 1.3493 | 1.1313 | -0.3493
Msg UnconT NA 4.0405 |4.8958 | 1.7030 | 1.2972 | -0.7030
PreP.Msg PropT 3.25 3.7720 | 1.3125 | 1.1607 | -0.3125
PreP.Msg PropT NA 3.5125 | 4.2718 | 1.6834 | 1.2544 | -0.6834
PreP.Msg UnconT 3.7905 | 4.5707 | 1.4843|1.2169 | -0.4843
PreP.Msg UnconT NA 4.0405 | 4.8958 | 1.7030 | 1.2972 | -0.7030
Msg FHash PropT 24875 |2.8611 | 0.7551 | 0.8883 | 0.24484
Msg FHash PropT NA 2.85 3.1922 | 0.9400 | 1.0178 | 0.05990
Msg FHash UnconT 2.6071 |3.2484 | 0.7234 | 0.8488 | 0.27657
Msg FHash UnconT NA 2.6562 | 3.2593 | 0.7282 | 0.8648 | 0.27171
PreP.Msg FHash PropT 3.05 3.4058 | 1.0701 | 1.0892 | -0.0701
PreP.Msg FHash PropT NA 2.6 2.8858 | 0.7682 | 0.9285 | 0.23172
PreP.Msg FHash UnconT 2.7901 | 3.4467 | 0.8144 | 0.908 | 0.18556
PreP.Msg FHash UnconT NA 2.8616 | 3.4125 | 0.7983 | 0.9316 | 0.20162
RawMsg PropT 1.3611 | 1.8263 | 1.6678 | 1.0208 | -0.6678
RawMsg PropT NA 2.5833 | 2.8694 |4.1168 | 1.9375 | -3.1168
RawMsg UnconT 2.9 3.8200 | 0.7859 | 0.7928 | 0.21402
RawMsg UnconT NA 3.0733 | 3.9588 | 0.8441 | 0.8402 | 0.15588
PreP.RawMsg PropT 0.5277 | 0.6328 | 0.2002 | 0.3958 | 0.79976
PreP.RawMsg PropT NA 2.5833 | 2.8694 | 4.1168 | 1.9375 | -3.1168
PreP.RawMsg UnconT 2.9466 | 3.7159 | 0.7437 | 0.8056 | 0.25627
PreP.RawMsg UnconT NA 3.0733 | 3.9588 | 0.8441 | 0.8402 | 0.15588
RawMsg FHash PropT 3.7916 | 5.3078 | 2.6361 | 1.3787 | -1.6361
RawMsg FHash PropT NA 4.0625 | 5.2026 | 2.5326 | 1.4772 | -1.5326
RawMsg FHash UnconT 2.875 3.3994 | 1.0458 | 1.0267 | -0.0458
RawMsg FHash UnconT NA 2.9 3.8249 | 1.3240 | 1.0357 | -0.3240
PreP.RawMsg FHash PropT 2.8194 | 2.8993 | 1.4834 | 1.4097 | -0.4834
PreP.RawMsg FHash PropT NA |2.5694 | 3.0503 | 1.6419 | 1.2847 | -0.6419
PreP.RawMsg FHash UnconT 2.6153 | 3.4303 | 0.8327]0.9324 | 0.16723
PreP.RawMsg FHash UnconT NA|2.5384 | 3.1784 | 0.7149 | 0.9050 | 0.28503

Table 10: Results of HML pipeline with Decision Forest regression algorithm in phase
2. FHash means Feature Hashing, PropT indicates proper training, UnconT that
unconventional training is done in phase 1, PreP. means that text preprocessing has
been used, and NA means that anomaly values has been removed for comparison
(NoAnomalies). The most promising comparison metrics and their component

combinations are bolded.

54

Message with feature hashing

Algorithm MAE | RMSE | RSE |RAE | CoD
Poisson PropT 3.1045 | 3.4232 1.0810 | 1.1087 | -0.0810
Poisson PropT NA 3.0647 | 3.3359 1.0266 | 1.0945 | -0.0266
Poisson UnconT 2.7530 | 3.4857 0.8329 | 0.8963 | 0.16704
Poisson UnconT NA 2.7412 | 3.3489 0.7688 | 0.8924 | 0.23113
NeuralNet PropT 2.9549 | 3.5045 1.1330 | 1.0553 | -0.1330
NeuralNet PropT NA 2.9368 | 3.4668 1.1087 | 1.0488 | -0.1087
NeuralNet UnconT 3.629 | 4.6548 1.4854 | 1.1817 | -0.4854
NeuralNet UnconT NA 3.7330 | 4.7398 1.5401 | 1.2154 | -0.5401
Boosted PropT 2.2013 | 2.8158 0.7314 | 0.7861 | 0.26852
Boosted PropT NA 2.1983 | 2.7899 0.7180 | 0.7851 | 0.28193
Boosted UnconT 3.0881 | 3.7033 0.9402 | 1.0054 | 0.05976
Boosted UnconT NA 2.9448 | 3.4691 0.8250 | 0.9587 | 0.17494
Linear PropT 2.9491 | 3.1988 0.9439 | 1.0532 | 0.05602
Linear PropT NA 2.8327 | 3.0956 0.8840 | 1.0117 | 0.11597
Linear UnconT 2.8672 | 3.5982 0.8876 | 0.9335 | 0.11238
Linear UnconT NA 2.6735 | 3.3376 0.7637 | 0.8704 | 0.23628
DecFor PropT 2.4875 | 2.8611 0.7551 | 0.8883 | 0.24484
DecFor PropT NA 2.85 3.1922 0.9400 | 1.0178 | 0.05990
DecFor UnconT 3.5236 | 4.3578 1.3493 | 1.1313 | -0.3493
DecFor UnconT NA 4.0405 | 4.8958 1.7030 | 1.2972 | -0.7030

Table 11: Results of HML pipeline with different algorithms used in phase 2. Feature
hashing has been used with message-column in each case. Poisson means Poisson
regression, NeuralNet indicates Neural Network regression, Boosted means Boosted
Decision Tree regression, Linear means Linear regression, and DecFor means
Decision Forest regression. Each algorithm is tested with unconventional (UnconT)
vs. proper training (PropT), and with or without anomaly probability values from
phase 1 (NA means NoAnomalies). The most promising results are bolded.

95

Pure rawmessage

Algorithm MAE RMSE | RSE | RAE | CoD
Poisson PropT 2.7528 2.9170 1.0348 | 1.1261 | -0.0348
Poisson PropT NA 2.7540 2.9185 1.0359 | 1.1266 | -0.0359
Poisson UnconT 2.2626 2.9650 0.8661 | 0.8927 | 0.13385
Poisson UnconT NA 2.3380 2.9977 0.8853 | 0.9225 | 0.11464
NeuralNet PropT 2.3926 2.5209 0.7729 | 0.9788 | 0.22704
NeuralNet PropT NA 2.3468 2.3981 0.6994 | 0.9600 | 0.30056
NeuralNet UnconT 2.8173 3.5439 1.2373 | 1.1116 | -0.2373
NeuralNet UnconT NA 2.3270 2.9708 0.8694 | 0.9181 | 0.13050
Boosted PropT 2.75 3.0103 1.1021 | 1.125 |-0.1021
Boosted PropT NA 2.75 3.0103 1.1021 | 1.125 |-0.1021
Boosted UnconT 2.8929 3.6821 1.3357 | 1.1414 | -0.3357
Boosted UnconT NA 2.7651 3.5996 1.2765 | 1.0910 | -0.2765
Linear PropT 2.6982 2.8526 0.9896 | 1.1038 | 0.01030
Linear PropT NA 2.6796 2.8188 0.9663 | 1.0962 | 0.03361
Linear UnconT 2.4777 3.0516 0.9174 | 0.9776 | 0.08254
Linear UnconT NA 2.3310 2.9720 0.8702 | 0.9197 | 0.12976
DecFor UnconT 2.9 3.8200 0.7859 | 0.7928 | 0.21402
DecFor UnconT NA 3.0733 3.9588 0.8441 | 0.8402 | 0.15588
DecFor PropT 1.3611 | 1.8263 1.6678 | 1.0208 | -0.6678
DecFor PropT NA 2.5833 |[2.8694 |4.1168 | 1.9375 | -3.1168

Table 12: Results of HML pipeline with different algorithms used in phase 2. Each
case uses pure rawmessage-column without preprocessing. Poisson means Poisson
regression, NeuralNet indicates Neural Network regression, Boosted means Boosted
Decision Tree regression, Linear means Linear regression, and DecFor means

Decision Forest regression. Each algorithm is tested with unconventional (UnconT)

vs. proper training (PropT), and with or without anomaly probability values from
phase 1 (NA means NoAnomalies). The most promising results are bolded.

o6

Preprocessed rawmessage

Algorithm MAE RMSE | RSE | RAE | CoD
Poisson PropT 2.7540 2.9186 1.0360 | 1.1266 | -0.0360
Poisson PropT NA 2.7540 2.9185 1.0359 | 1.1266 | -0.0359
Poisson UnconT 2.3714 3.0466 0.9144 | 0.9357 | 0.08556
Poisson UnconT NA 2.3380 2.9977 0.8853 | 0.9225 | 0.11464
NeuralNet PropT 2.5653 2.6747 0.8701 | 1.0494 | 0.12986
NeuralNet PropT NA 2.3468 2.3981 0.6994 | 0.9600 | 0.30056
NeuralNet UnconT 2.7686 3.4396 1.1656 | 1.0924 | -0.1656
NeuralNet UnconT NA 2.3270 2.9708 0.8694 | 0.9181 | 0.13050
Boosted PropT 2.75 3.0103 1.1021 | 1.125 |-0.1021
Boosted PropT NA 2.75 3.0103 1.1021 | 1.125 |-0.1021
Boosted UnconT 2.9566 3.6357 1.3022 | 1.1666 | -0.3022
Boosted UnconT NA 2.7651 3.5996 1.2765 | 1.0910 | -0.2765
Linear PropT 2.6992 2.8546 0.9910 | 1.1042 | 0.00890
Linear PropT NA 2.6796 2.8188 0.9663 | 1.0962 | 0.03361
Linear UnconT 2.2808 2.9685 0.8681 | 0.8999 | 0.13182
Linear UnconT NA 2.3310 2.9720 0.8702 | 0.9197 | 0.12976
DecFor PropT 0.5277 | 0.6328 0.2002 | 0.3958 | 0.79976
DecFor PropT NA 2.5833 | 2.8694 4.1168 | 1.9375 | -3.1168
DecFor UnconT 2.9466 3.7159 0.7437 | 0.8056 | 0.25627
DecFor UnconT NA 3.0733 3.9588 0.8441 | 0.8402 | 0.15588

Table 13: Results of HML pipeline with different algorithms used in phase 2. Each
case uses preprocessed rawmessage-column. Poisson means Poisson regression,
NeuralNet indicates Neural Network regression, Boosted means Boosted Decision
Tree regression, Linear means Linear regression, and DecFor means Decision Forest
regression. Each algorithm is tested with unconventional (UnconT) vs. proper
training (PropT), and with or without anomaly probability values from phase 1
(NA means NoAnomalies). The most promising results are bolded.

Results with fresh test data

Algorithm MAE |RMSE |RSE |RAE | CoD
Decision Forest, message, feature| 1.7333 2.2899 1.2341 | 1.1470 | -0.2341
hashing, proper training
Decision Forest, preprocessed 3.4888 | 3.8921 3.5654 | 2.3088 | -2.5654
rawmessage, unconventional
training

Decision Forest, preprocessed 4.25 4.6840 | 5.1637 | 2.8125 | -4.1637
rawmessage, proper training

Table 14: Final HML results with fresh test data. CoD-value in each case is negative,
which means that the estimation power of the trained algorithms is weaker than
random. Thus, these component combinations are not able to find the connection
we were aiming for.

57

6 Summary

This thesis study investigated possibilities to utilize machine learning in order to
predict technical ticket arrival based on RPA log events and ticket timestamps using
anomaly detection. Several steps were required before the actual algorithm training
could be initialized.

First, the data had to be anonymized. We compared the possible outcome of full
anonymization of sensitive data with pseudonymization and k-anonymization. Data
security restrictions and the probable type of log events inducing technical tickets
settled us to choose full anonymization, which was carried out with PowerShell script
in production environment.

Next, local data preprocessing was required before the data was deemed suitable
for ML training. As the data consisted of miscellaneous types of input, we had to
create another script to reformat the data in a consistent form.

After this, the proper ML training steps in Azure ML Studio environment could
begin. One of the main problems we had to solve was the issue of how to combine
log events with simple timestamp data of the technical tickets with an unknown span
of random delay. We decided to use hybrid machine learning fused with a time frame
compression method to avoid the random delay issue. This, however, leaned heavily
on the hypothesis that most anomalous log events are related to technical tickets
received. This hypothesis had to be validated by comparing the results of the final
algorithm training with the results of an ML pipeline branch where anomaly values
had been removed.

In order to find the best possible combination of ML components for hybrid
machine learning, both in terms of suitable algorithms and input data features,
several combinations were tested and compared with each other. In the end, however,
it became clear that either our original hypothesis had to be assumed incorrect and
anomalous events are not linked to technical support tickets, or more research is
required to find the connection between the log events and ticket timestamps.

o8

References

[1]

2]

3]

[10]

[11]

[12]

P. K. Donepudi, “Machine learning and artificial intelligence in banking,”
Engineering International, vol. 5, no. 2, pp. 83-86, 2017.

W. M. Van der Aalst, M. Bichler, and A. Heinzl, “Robotic process automation,”
pp. 269-272, 2018,

A. DeLaRosa, “Log monitoring: not the ugly sister,” Pandora FMS,
2018. [Online]. Available: https://web.archive.org/web/20210901031146/https:
/ /pandorafms.com /blog /log-monitoring /

W. K. Ho, B.-S. Tang, and S. W. Wong, “Predicting property prices with
machine learning algorithms,” Journal of Property Research, vol. 38, no. 1, pp. 48~
70, 2021. [Online|. Available: https://doi.org/10.1080/09599916.2020.1832558

K. Ghanem, F. J. Aparicio-Navarro, K. G. Kyriakopoulos, S. Lambotharan, and
J. A. Chambers, “Support vector machine for network intrusion and cyber-attack
detection,” in 2017 Sensor Signal Processing for Defence Conference (SSPD),
2017, pp. 1-5.

M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

“Definition of algorithm,” accessed: 2022-05-19. [Online]. Avail-
able: https://web.archive.org/web/20220510183749 /https: //www.merriam-
webster.com/dictionary/algorithm

T. O. Ayodele, “Types of machine learning algorithms,” New advances in
machine learning, vol. 3, pp. 19-48, 2010.

B. Mahesh, “Machine learning algorithms-a review,” International Journal of
Science and Research (IJSR).[Internet], vol. 9, pp. 381-386, 2020.

R. Vickery, “Beginners guide to the three types of machine learning,”
2019, accessed: 2022-07-12. [Online]. Available: https://web.archive.org/
web/20220712170551 /https: / /towardsdatascience.com /beginners-guide-to-the-
three-types-of-machine-learning-3141730ef45d?gi=9dbbaat56001

X. Chen, Y. Fang, M. Yang, F. Nie, Z. Zhao, and J. Z. Huang, “Purtreeclust:
A clustering algorithm for customer segmentation from massive customer trans-

action data,” IEEE Transactions on Knowledge and Data Engineering, vol. 30,
no. 3, pp. 559-572, 2017.

H. Li, “Which machine learning algorithm should i
use?” 2017, accessed: 2022-07-13. [Online]. Avail-
able: https://web.archive.org/web/20220402120055/https://blogs.sas.com/
content/subconsciousmusings/2020/12/09 /machine-learning-algorithm-use/

https://web.archive.org/web/20210901031146/https://pandorafms.com/blog/log-monitoring/
https://web.archive.org/web/20210901031146/https://pandorafms.com/blog/log-monitoring/
https://doi.org/10.1080/09599916.2020.1832558
https://web.archive.org/web/20220510183749/https://www.merriam-webster.com/dictionary/algorithm
https://web.archive.org/web/20220510183749/https://www.merriam-webster.com/dictionary/algorithm
https://web.archive.org/web/20220712170551/https://towardsdatascience.com/beginners-guide-to-the-three-types-of-machine-learning-3141730ef45d?gi=9db5aaf56001
https://web.archive.org/web/20220712170551/https://towardsdatascience.com/beginners-guide-to-the-three-types-of-machine-learning-3141730ef45d?gi=9db5aaf56001
https://web.archive.org/web/20220712170551/https://towardsdatascience.com/beginners-guide-to-the-three-types-of-machine-learning-3141730ef45d?gi=9db5aaf56001
https://web.archive.org/web/20220402120055/https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/
https://web.archive.org/web/20220402120055/https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

99

P. Baheti, “Train test validation split: How to and best practices 2022,”
2022, accessed: 2022-07-14. [Online]. Available: https://web.archive.org/web/
20220714125714/https:/ /www.vTlabs.com/blog/train-validation-test-set

L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data:
Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350-361, 2017.

“Comparing machine learning as a service: Amazon, microsoft
azure, google cloud ai, ibm watson,” accessed: 2022-04-04. [On-
line]. Available: https://web.archive.org/web/20220714131635/https:
/ /www.altexsoft.com /blog/datascience/comparing-machine-learning-as-a-
service-amazon-microsoft-azure-google-cloud-ai-ibm-watson /

“Azure machine learning - ml as a service - microsoft azure 2022,” 2022, accessed:
2022-07-12. [Online]. Available: https://web.archive.org/web/20220714154625/
https://azure.microsoft.com/en-us/services/machine-learning

“Definition of regression,” accessed: 2022-07-19. [Online]. Avail-
able: https://web.archive.org/web/20220719100911 /https://www.merriam-

webster.com/dictionary /regression

R. J. Freund, W. J. Wilson, and P. Sa, Regression analysis. FElsevier, 2006, pp.
xiii,320-321,439-441.

F. Stulp and O. Sigaud, “Many regression algorithms, one unified model: A
review,” Neural Networks, vol. 69, pp. 60-79, 2015.

“Pca-based anomaly detection: component reference - azure machine
learning,” 2022, accessed: 2022-07-10. [Online]. Available: https:
/ /web.archive.org/web/20220710090015 /https://docs.microsoft.com /en-us/
azure/machine-learning/component-reference /pca-based-anomaly-detection

L. I. Smith, “A tutorial on principal components analysis,” University of Otago,
Tech. Rep. OUCS-2002-12, 2002, available: http://hdl.handle.net/10523/7534.

S. Borm and C. Mehl, “Numerical methods for eigenvalue problems,” in Numer-
ical Methods for Figenvalue Problems. de Gruyter, 2012, pp. 9-10.

Z. Jun, “Unsupervised learning (ii) dimension reduction,” October
2019. [Online]. Available: https://web.archive.org/web/20220721113413/https:
//thudm.github.io/Tsinghua-ML-Course/slides/5-Dimension%20reduction.pdf

7. Jaadi, “A step-by-step explanation of princi-
pal component analysis (pca),” 2021. [Online]. Avail-
able: https://web.archive.org/web/20220720181640 /https://builtin.com/data-
science/step-step-explanation-principal-component-analysis

S. M. Holland, “Principal components analysis (pca),” Department of Geology,
University of Georgia, Athens, GA, pp. 30602-2501, 2008.

https://web.archive.org/web/20220714125714/https://www.v7labs.com/blog/train-validation-test-set
https://web.archive.org/web/20220714125714/https://www.v7labs.com/blog/train-validation-test-set
https://web.archive.org/web/20220714131635/https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://web.archive.org/web/20220714131635/https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://web.archive.org/web/20220714131635/https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://web.archive.org/web/20220714154625/https://azure.microsoft.com/en-us/services/machine-learning
https://web.archive.org/web/20220714154625/https://azure.microsoft.com/en-us/services/machine-learning
https://web.archive.org/web/20220719100911/https://www.merriam-webster.com/dictionary/regression
https://web.archive.org/web/20220719100911/https://www.merriam-webster.com/dictionary/regression
https://web.archive.org/web/20220710090015/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/pca-based-anomaly-detection
https://web.archive.org/web/20220710090015/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/pca-based-anomaly-detection
https://web.archive.org/web/20220710090015/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/pca-based-anomaly-detection
http://hdl.handle.net/10523/7534
https://web.archive.org/web/20220721113413/https://thudm.github.io/Tsinghua-ML-Course/slides/5-Dimension%20reduction.pdf
https://web.archive.org/web/20220721113413/https://thudm.github.io/Tsinghua-ML-Course/slides/5-Dimension%20reduction.pdf
https://web.archive.org/web/20220720181640/https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://web.archive.org/web/20220720181640/https://builtin.com/data-science/step-step-explanation-principal-component-analysis

[26]

[34]

[35]

60

“Ome-class support vector machine component reference - azure
machine learning 2021, 2019, accessed: 2022-07-19. [On-
line]. Available: https://web.archive.org/web/20220719151913/https:

/ /docs.microsoft.com/en-us/previous-versions /azure /machine-learning /studio-
module-reference/one-class-support-vector-machine

J. Firnkranz, “A study using n-gram features for text categorization,” Austrian
Research Institute for Artifical Intelligence, vol. 3, no. 1998, pp. 1-10, 1998.

“Feature hashing component reference - azure machine
learning,” 2021, accessed: 2022-07-21. [Online]. Available:
https://web.archive.org/web/20220721142304 /https://docs.microsoft.com /en-
us/azure/machine-learning /component-reference/feature-hashing

C. Caragea, A. Silvescu, and P. Mitra, “Protein sequence classification using
feature hashing,” in Proteome science, vol. 10, no. 1. Springer, 2012, pp. 1-8.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan,
“Hash kernels for structured data.” Journal of Machine Learning Research, vol. 10,
no. 11, 2009.

A. M. Tripathi, Learning Robotic Process Automation: Create Software robots
and automate business processes with the leading RPA tool-UiPath. Packt
Publishing Ltd, 2018, pp. 9-10.

R. Noumeir, A. Lemay, and J.-M. Lina, “Pseudonymization of radiology data
for research purposes,” Journal of digital imaging, vol. 20, no. 3, pp. 284-295,
2007.

J.-W. Byun, A. Kamra, E. Bertino, and N. Li, “Efficient k-anonymization using
clustering techniques,” in International Conference on Database Systems for
Advanced Applications. Springer, 2007, pp. 188-200.

A. Rantala, “Applying machine learning to automatic incident detection from
software log output,” Master’s thesis, Aalto-yliopisto, Sdhkotekniikan korkeak-
oulu, 2019, available: http://urn.fi/URN:NBN:fi:aalto-201906234018.

S. Allagi and R. Rachh, “Analysis of network log data using machine learning,” in
2019 IEEE 5th International Conference for Convergence in Technology (I2CT).
IEEE, 2019, pp. 1-3.

N. Kondo, M. Okubo, and T. Hatanaka, “Early detection of at-risk students
using machine learning based on lms log data,” in 2017 6th IIAI international
congress on advanced applied informatics (IIAI-AAI). 1EEE, 2017, pp. 198-201.

Q. Cao, Y. Qiao, and Z. Lyu, “Machine learning to detect anomalies in web
log analysis,” in 2017 3rd IEEE International Conference on Computer and
Communications (ICCC). TEEE, 2017, pp. 519-523.

https://web.archive.org/web/20220719151913/https://docs.microsoft.com/en-us/previous-versions/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://web.archive.org/web/20220719151913/https://docs.microsoft.com/en-us/previous-versions/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://web.archive.org/web/20220719151913/https://docs.microsoft.com/en-us/previous-versions/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://web.archive.org/web/20220721142304/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/feature-hashing
https://web.archive.org/web/20220721142304/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/feature-hashing
http://urn.fi/URN:NBN:fi:aalto-201906234018

[38]

[39]

[43]

[44]

61

D. Liu, “Log analysis for anomaly detection,” 2019, accessed: 2022-07-
15. [Online]. Available: https://web.archive.org/web/20220715102721 /https:
//davideliu.com/2019/10/26 /log-analysis-for-anomaly-detection/

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable log
data,” in Proceedings of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 807-817.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Jagadish,
“Regular expression learning for information extraction,” in Proceedings of the

2008 conference on empirical methods in natural language processing, 2008, pp.
21-30.

C.-F. Tsai and M.-L. Chen, “Credit rating by hybrid machine learning tech-
niques,” Applied soft computing, vol. 10, no. 2, pp. 374-380, 2010.

F. Anifowose, “Hybrid machine learning explained in nontechnical terms,” JPT,
2020. [Online]. Available: https://web.archive.org/web/20220612142143/https:
//jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms

T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly
detection,” Information Sciences, vol. 177, no. 18, pp. 3799-3821, 2007.

S. Mohan, C. Thirumalai, and G. Srivastava, “Effective heart disease prediction
using hybrid machine learning techniques,” IEEFE access, vol. 7, pp. 81 542—
81554, 2019.

N.-C. Hsieh, “Hybrid mining approach in the design of credit scoring models,”
Ezxpert Systems with Applications, vol. 28, no. 4, pp. 655-665, 2005.

A. Jain and A. M. Kumar, “Hybrid neural network models for hydrologic time
series forecasting,” Applied Soft Computing, vol. 7, no. 2, pp. 585-592, 2007.

H.-j. Kim and K.-s. Shin, “A hybrid approach based on neural networks and
genetic algorithms for detecting temporal patterns in stock markets,” Applied
Soft Computing, vol. 7, no. 2, pp. 569-576, 2007.

T.-S. Lee, C.-C. Chiu, C.-J. Lu, and I.-F. Chen, “Credit scoring using the
hybrid neural discriminant technique,” Fxpert Systems with applications, vol. 23,
no. 3, pp. 245-254, 2002.

R. Malhotra and D. Malhotra, “Differentiating between good credits and bad
credits using neuro-fuzzy systems,” Furopean journal of operational research,
vol. 136, no. 1, pp. 190-211, 2002.

https://web.archive.org/web/20220715102721/https://davideliu.com/2019/10/26/log-analysis-for-anomaly-detection/
https://web.archive.org/web/20220715102721/https://davideliu.com/2019/10/26/log-analysis-for-anomaly-detection/
https://web.archive.org/web/20220612142143/https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms
https://web.archive.org/web/20220612142143/https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms

[50]

[55]

[56]

[57]

[58]

[59]

[60]

62

“Extract n-gram features from text component reference - azure
machine learning 2021,” 2021, accessed: 2022-07-10. [On-
line]. Available: https://web.archive.org/web/20220717165959/https:

/ /docs.microsoft.com/en-us/azure/machine-learning /component-reference/
extract-n-gram-features-from-text

“Preprocess text component - azure machine learning,” 2021, accessed: 2022-07-
24. [Online]. Available: https://web.archive.org/web/20220724154720 /https:
//docs.microsoft.com/en-us/azure/machine-learning /component-reference/
preprocess-text

H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “Machine learning basics,”
Deep learning, pp. 98-164, 2016.

W. Palma, Time series analysis. John Wiley & Sons, 2016, pp. 120,2i.

“Fast forest quantile regression component - azure machine learn-
ing,” 2021, accessed: 2022-07-23. [Online]. Available: https:

//web.archive.org/web/20220723141243/https://docs.microsoft.com/en-us/
azure/machine-learning/component-reference/fast-forest-quantile-regression

“Linear regression component - azure machine learning,” 2021, accessed: 2022-
07-23. [Online]. Available: https://web.archive.org/web/20220723141933 /https:
//docs.microsoft.com/en-us/azure /machine-learning /component-reference/
linear-regression

“Boosted decision tree regression component - azure machine
learning,” 2022, accessed: 2022-07-23. [Online]. Available: https:
//web.archive.org/web/20220723141631 /https://docs.microsoft.com /en-us/

azure/machine-learning/component-reference /boosted-decision-tree-regression

“Decision forest regression component - azure machine learn-
ing,” 2021, accessed: 2022-07-23. [Online]. Available:
https://web.archive.org/web/20220723141819 /https://docs.microsoft.com/en-
us/azure/machine-learning /component-reference /decision-forest-regression

“Neural network regression component - azure machine
learning,” 2021, accessed: 2022-07-23. [Online]. Available:
https://web.archive.org/web/20220723142033 /https://docs.microsoft.com/en-
us/azure/machine-learning /component-reference /neural-network-regression

“Poisson regression component - azure machine learning,” 2021, accessed: 2022-
07-23. [Online]. Available: https://web.archive.org/web/20220723142122 /https:
//docs.microsoft.com /en-us/azure/machine-learning /component-reference /
poisson-regression

“Evaluate model component - azure machine learning,” 2021, accessed: 2022-07-
25. [Online]. Available: https://web.archive.org/web/20220725130626 /https:

https://web.archive.org/web/20220717165959/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/extract-n-gram-features-from-text
https://web.archive.org/web/20220717165959/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/extract-n-gram-features-from-text
https://web.archive.org/web/20220717165959/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/extract-n-gram-features-from-text
https://web.archive.org/web/20220724154720/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/preprocess-text
https://web.archive.org/web/20220724154720/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/preprocess-text
https://web.archive.org/web/20220724154720/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/preprocess-text
https://web.archive.org/web/20220723141243/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/fast-forest-quantile-regression
https://web.archive.org/web/20220723141243/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/fast-forest-quantile-regression
https://web.archive.org/web/20220723141243/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/fast-forest-quantile-regression
https://web.archive.org/web/20220723141933/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/linear-regression
https://web.archive.org/web/20220723141933/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/linear-regression
https://web.archive.org/web/20220723141933/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/linear-regression
https://web.archive.org/web/20220723141631/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/boosted-decision-tree-regression
https://web.archive.org/web/20220723141631/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/boosted-decision-tree-regression
https://web.archive.org/web/20220723141631/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/boosted-decision-tree-regression
https://web.archive.org/web/20220723141819/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/decision-forest-regression
https://web.archive.org/web/20220723141819/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/decision-forest-regression
https://web.archive.org/web/20220723142033/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/neural-network-regression
https://web.archive.org/web/20220723142033/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/neural-network-regression
https://web.archive.org/web/20220723142122/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/poisson-regression
https://web.archive.org/web/20220723142122/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/poisson-regression
https://web.archive.org/web/20220723142122/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/poisson-regression
https://web.archive.org/web/20220725130626/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model

63

//docs.microsoft.com/en-us/azure /machine-learning /component-reference/
evaluate-model

https://web.archive.org/web/20220725130626/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model
https://web.archive.org/web/20220725130626/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model
https://web.archive.org/web/20220725130626/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model
https://web.archive.org/web/20220725130626/https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model

64

A Final pipeline structure

Final pipeline includes message and rawmessage branches, their pure, preprocessed and feature hashing combinations,

two algorithm comparison blocks, and a three final test branches using fresh data for for model scoring.

65

B RPA log data example

RPA log data in raw format after anonymizing and exporting to local environment.
Here are four lines of log events with different log levels, first line being a header row.
First example has been reduced in size with [...]-marking. Data is in CSV-format,
with each column separated by comma. The rawmessage is injected inside CSV in
JSON-format.

This data was fetched from the SQL-database with the following SQL-script:
SELECT OrganizationUnitId,TenantId,TimeStamp,Level,

ProcessName, JobKey,RobotName ,Message ,RawMessage,

MachineId FROM [dbo]. [logs]

"OrganizationUnitId","TenantId","TimeStamp","Level","ProcessName","JobKey","RobotName","Message", "RawMessage","MachineId"
"B","5","1/2/2020 12:55:24 PM","4","rpa-bank-020-lainahakemuksien-tietojen-siirto_Samlink Production",

"b03cfd05-1807-45e7-b962-c9d95e49a3fc" , "RPA-RPP-4", "System.I0.I0Exception: The process cannot access the file

’W:\RPA\BANK\020 lainahakemuksien tietojen siirto\prod\Config.x1lsx’ because it is being used by another process.

at System.IO0.__Error.WinIOError(Int32 errorCode, String maybeFullPath)

at System.I0.FileStream.Init(String path, FileMode mode, FileAccess access, Int32 rights, Boolean useRights,
FileShare share, Int32 bufferSize, FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean
bFromProxy, Boolean useLongPath, Boolean checkHost)

at System.IO0.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize,
FileOptions options, String msgPath, Boolean bFromProxy)

at System.IO0.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize,
Boolean useAsync)

[...]

at System.Activities.Runtime.ActivityExecutor.ExecuteActivityWorkItem.ExecuteBody(ActivityExecutor executor,
BookmarkManager bookmarkManager, Location resultLocation)","{

"message": "System.IO.IOException: The process cannot access the file ’W:\\RPA\\BANK\\020 lainahakemuksien tietojen
siirto\\prod\\Config.x1sx’ because it is being used by another process.\r\n at System.IO.__Error.WinIOError
(Int32 errorCode, String maybeFullPath)\r\n at System.IO.FileStream.Init(String path, FileMode mode,
FileAccess access, Int32 rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions optionms,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy, Boolean useLongPath, Boolean checkHost)\r\n
at System.IO0.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize,
FileOptions options, String msgPath, Boolean bFromProxy)\r\n at System.I0.FileStream..ctor(String path,
FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean useAsync) [...] at
System.Activities.Runtime.ActivityExecutor.ExecuteActivityWorkItem.ExecuteBody(ActivityExecutor executor,
BookmarkManager bookmarkManager, Location resultLocation)",

"level": "Error",

"logType": "User",

"timeStamp": "2020-01-02T14:55:24.6280687+02:00",

"fingerprint": "5ebb011b-fb3d-402a-8024-79a21e6629c9",

"windowsIdentity": "LOCAL\\WinID",

"machineName": "T4690A3018",

"processName": "rpa-bank-020-lainahakemuksien-tietojen-siirto_Samlink Production",

"processVersion": "1.0.7244.25507",

"jobId": "b03cfd05-1807-45e7-b962-c9d95e49a3fc",

"robotName": "RPA-RPP-4",

"machineId": 28,

"fileName": "GlobalHandler"

}r, 28"
"B","5","1/2/2020 12:55:24 PM","0","rpa-bank-020-lainahakemuksien-tietojen-siirto_Samlink Production",

"b03cfd05-1807-45e7-b962-c9d95e49a3fc" , "RPA-RPP-4", "Log Error Executing","

"message": "Log Error Executing",

"level": "Verbose",

"logType": "Default",

"timeStamp": "2020-01-02T14:55:24.6280687+02:00",

"fingerprint": "3c68aacf-dd4c-4ad4-8045-043e72b35bb7",

"windowsIdentity": "LOCAL\\WinID",

"machineName": "T4690A3018",

"processName": "rpa-bank-020-lainahakemuksien-tietojen-siirto_Samlink Production",

"processVersion": "1.0.7244.25507",

"jobId": "b03cfd05-1807-45e7-b962-c9d95e49a3fc",

"robotName": "RPA-RPP-4",

"machineId 28,

"fileName": "GlobalHandler",

"activityInfo": {

"Activity": "UiPath.Core.Activities.LogMessage",
"DisplayName": "Log Error",
"State": "Executing",
"Variables": {
"answer": "",
"retry": "0",
"HetuFound": "False",
"FilteredException": ""

},
"Arguments": {

"Message": "System.I0.IOException: The process cannot access the file ’W:\\RPA\\BANK\\020 lainahakemuksien
tietojen siirto\\prod\\Config.xlsx’ because it is being used by another process.\r\n at System.IO.
__Error.WinIOError(Int32 errorCode, String maybeFullPath)\r\n at System.IO.FileStream.Init(String
path, FileMode mode, FileAccess access, Int32 rights, Boolean useRights, FileShare share, Int32
bufferSize, FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy,

}

}r, 28"

"5","5","8/11/2021 10:14:26 PM","3","rpa-bank-0l1-ott-valmistelu-4503","5186baa6-6f2d-4cc0-8001-a78£518579fb",
"RPA-RPP-1-4503","Screenshot saved at: G:\Robotiikka\011 OTT Valmis\prod\Screensh\ExceptionScreenshot_.011426.png","
"message": "Screenshot saved at: G:\\Robotiikka\\011 OTT Valmis\\prod\\Screensh\\ExceptionScreenshot_.011426.png"
"level": "Warning",

"logType": "User",

"timeStamp": "2021-08-12T01:14:26.3516259+03:00",
"fingerprint": "3ced557c-7a73-4e0c-bd73-1759fbbd8cca"
"windowsIdentity": "LOCAL\\WinID",

"machineName": "T4690K3336",

"processName": "rpa-bank-0ll-ott-valmistelu-4503",
"processVersion": "1.6.7769.24916",

"jobId": "5186baa6-6f2d-4cc0-8001-a78£518579fb",
"robotName": "RPA-RPP-1-4503",

"machineId": 38,

"organizationUnitId": 5,

"fileName": "TakeScreenshot",
"logF_BusinessProcessName": "rpa-bank-011-0TT-valmistelu"

3, 38"

"5","5","8/11/2021 9:46:52 PM","2","rpa-bank-0ll-ott-valmistelu-4260","66d75a97-9f08-401c-8e27-b1d23463a44f",

yon

Boolean useLongPath, Boolean checkHost)\r\n at System.IO.FileStream..ctor(String path, FileMode mode,
FileAccess access, FileShare share, Int32 bufferSize, FileOptions options, String msgPath, Boolean
bFromProxy) \r\n at System.I0.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare
share, Int32 bufferSize, Boolean useAsync)\r\n at MS.Internal.IO.Zip.ZipArchive.OpenOnFile(String
path, FileMode mode, FileAccess access, FileShare share, Boolean streaming)\r\n at System.IO.
Packaging.ZipPackage. .ctor (String path, FileMode mode, FileAccess access, FileShare share, Boolean
streaming)\r\n at System.I0.Packaging.Package.Open(String path, FileMode packageMode, FileAccess
packageAccess, FileShare packageShare, Boolean streaming)\r\n at DocumentFormat.OpenXml.Packaging.
OpenXmlPackage.OpenCore(String path, Boolean readWriteMode)\r\n at DocumentFormat.OpenXml.Packaging.
SpreadsheetDocument .Open(String path, Boolean isEditable, OpenSettings openSettings)\r\n at ClosedXML.
Excel.XLWorkbook.LoadSheets(String fileName) in C:\\Projects\\ClosedXML\\ClosedXML\\Excel\\XLWorkbook
_Load.cs:1line 44\r\n at UiPath.Excel.WOrkbookFile..ctor(String workbookPath, String password, Boolean
createNew)\r\n at UiPath.Excel.Activities.WorkbookActivity‘1.ConstructWorkbook(String path, String
password, Boolean createNew)\r\n at UiPath.Excel.Activities.WorkbookActivity‘1.BeginExecute(
AsyncCodeActivityContext context, AsyncCallback callback, Object state)\r\n at System.Activities.
AsyncCodeActivity.InternalExecute(ActivityInstance instance, ActivityExecutor executor, BookmarkManager
bookmarkManager)\r\n at System.Activities.ActivityInstance.Execute(ActivityExecutor executor,
BookmarkManager bookmarkManager)\r\n at System.Activities.Runtime.ActivityExecutor.
ExecuteActivityWorkItem.ExecuteBody (ActivityExecutor executor, BookmarkManager bookmarkManager, Location
resultLocation)"

"RPA-RPP-2-4260","Kaikkien tilien saldo tAmlle hetulle nyt: 1.05","{
"message": "Kaikkien tilien saldo tAmlle hetulle nyt: 1.05",
"level": "Information",

"logType": "User",

"timeStamp": "2021-08-12T00:46:52.328433+03:00",
"fingerprint": "5b4c9287-eb8d-4fb0-9e21-015eee3b3adb",
"windowsIdentity": "LOCAL\\WinID",

"machineName": "T4690A3016",

"processName": "rpa-bank-0l1l-ott-valmistelu-4260",
"processVersion": "1.6.7769.24916",

"jobId": "66d75a97-9£08-401c-8e27-b1d23463a44f",

"robotName "RPA-RPP-2-4260",

"machineId": 11,

"organizationUnitId": 5,

"fileName": "TilienSaldot",

"logF_BusinessProcessName": "rpa-bank-011-0TT-valmistelu"
11"

66

67

C Anonymization script

Next here is the PowerShell script used to anonymize the RPA log data. During
data fetching with SQL, special string tokens were added at the beginning and the
end of each row for anonymizing script to separate each row. This was because of
the rawmessage-field which included line breaks and thus the span of one log entry
could be over dozens of rows in CSV file.

As data size was multiple gigabytes, it was impossible to read it to memory in one
go. Instead, stream reading was applied. Script reads one log entry to the memory;,
makes necessary processing and anonymization, and outputs the entry in one line to
output file before reading the next row.

UltimateAnonymizer.ps
This script converts product data to pure CSV and anonymizes it on the go

$prodLevel = "tuotanto"

Input file path

$path = "C:\dippa\tuotanto\tuotanto_arkisto_$prodLevel.csv"
$errorLogPath = "C:\dippa\tuotanto\ultimate_error.log"
$logpath = "C:\dippa\tuotanto\ultimate_run.log"

Out-File -Encoding utf8 -FilePath $logpath
Add-Content $logpath "$(Get-Date): Starting powershell script"

Out-File -Encoding utf8 -FilePath $errorLogPath

Output file path
Important: specify a *fullx path
$outFileStream = [System.IO0.StreamWriter] "C:\dippa\tuotanto\tuotanto_arkisto_$prodLevel‘_final.csv"

$lineCounter = 0
$json = 7’

$outFileStream.WriteLine(’"organizationUnitId","level","logType","timeStamp","fingerprint","machineName",
"processName","jobId","robotName","machineId","message","rawmessage"’)

$SSNregex = "(7<![a-zA-Z0-9]) [\d]{6} [-a+]7[\d]{3} [\w]l{1}(?:0{0}|0{3}) (7! [a-zA-Z0-9])"

$EMAILregex = "["\¢"\s]+@[\.\w-I*[\w]"

$IBANregex = "(7:(?<![a-zA-Z0-9]1) | (7<=\\\D)) (?:FI|£i) (?: ?\d){16}(?! [a-zA-Z0-9])"

$BBANDASHregex = "(7<![a-zA-Z0-9]) [\d]1{6}-[\d]1{2,8}(?! [a-zA-Z0-9])"

$PHONEINTregex = "(7<![a-zA-Z0-91)\+358(7: ?\d){8,10}(?![a-zA-Z0-9])"

$PHONEregex = "(?7<![a-zA-Z0-9-1) [0] [\d]{2,3}[-17(?: ?\d){6,8}(?![a-2zA-Z20-9-1)"

$BUSINESSregex = "(7<![a-zA-Z20-9]) [\d1{7}-[\d]{1}(?! [a-zA-Z0-9])"

$BUSINESSINTregex = "(7<![a-zA-Z0-9]) [a-zA-Z]1{2} [\d]1{8}(?! [a-zA-Z0-91)"

$BUSINESSINTZEROregex = "(?<![a-zA-Z0-9]) [01{2}[\d]1{8}(?! [a-zA-Z0-9])"

$CCregex = "(7<![a-zA-Z0-9-.1) [\d1{1}(?: ?\d){14,15}(?! [a-zA-Z0-9-1)"

$WINIDregex = "(7<![a-zA-Z0-9]) [a-zA-Z]{1,2} [\d]1{6}(?! [a-ZzA-Z0-9])"

$ADDRCOMregex = "["\s""’,.]* ?(katultielkujalpolkulkaari|linjal|raittilrinne|penger|rantal|vayla|taival|tanhua|portti
|verajallaitalreunalsyrjélaukioltorillaituri|tunneli) [\d]{1,3}(?[a-zA-Z.]{1,4} 7[\d]1{0,3}1)7(?!'\w)"

$ADDRZIPregex = "(?<=\s) [\S]* [\d]{1,3}(7[a-zA-Z.]1{1,4} 7[\d]1{0,3})7(\sl,\s) [\dI{E}(?1\w)"

$BankIDregex = "(?<![a-zA-Z0-9-1) [\d]1{8}(7! [a-zA-Z0-9-1)"

$BBANnoDASHregex = "(7<![a-zA-Z0-9]) [\d]{14}(?! [a-zA-Z0-9])"

$BUSINESSArtificialregex = "(?<![a-zA-Z0-9]) [89]1{1}[\d]{9}(?! [a-zA-Z0-9])"

function Hide-Sensitive {
param (
[Parameter (Mandatory, ValueFromPipeline)]
[string] $sensitiveLine
)
0BS! If number is replaced with letters,
it is possible we break JSON key-value pair where value is (was) number.
This is why possibly only number containing strings are replaced to numbers
$sensitiveline -replace $SSNregex ,"10105051470101" ¢
-replace $EMAILregex ,"EmailAddress0101" ¢
-replace $IBANregex ,"1010IBANnumber0101" ¢
-replace $BBANDASHregex ,"1010BBANnumber0101" ¢
-replace $BBANnoDASHregex ,"101088420101" ¢
-replace $PHONEINTregex ,"1010PhoneNumberInt0101" ¢
-replace $PHONEregex ,"1010980230101" ¢
-replace $BUSINESSregex ,"1010BusinessID0101" ¢
-replace $BUSINESSINTregex ,"101086512350101" ¢
-replace $BUSINESSINTZEROregex ,"1010865123500101" ¢
-replace $BUSINESSArtificialregex ,"101086512354970101" ¢
-replace $CCregex ,"1010664900101" ¢
-replace $BankIDregex ,"10108426100101" ¢
-replace $WINIDregex ,"1010WinIDO101" ¢
-replace $ADDRCOMregex ,"1010AddressCommon0101" ¢
-replace $ADDRZIPregex ,"1010AddressZip0101" ¢

function Write-Json {
param (
[Parameter (Mandatory, ValueFromPipeline)]
[stringl$json

)
try {
From each message/rawmessage field, first filter out all line endings, then remove unnecessary special characters,
excess whitespaces, and finally anonymize sensitive information
($json | ConvertFrom-Json).SyncRoot |
Select-Object organizationUnitId,level,logType,timeStamp,fingerprint,machineN: ,Proc: Name, jobId,robotName,machineld,
@{1="message’;e={$_.message -replace ’>(\rl|\nl‘r|‘n)’, ’’ -replace ’["\p{LH\p{Nd} .,\-_\/O{}\[\1:+1’,
>’ -replace ’\s+’, ’ ’ | Hide-Sensitivel}},
@{1="rawmessage’;e={[System.Text.RegularExpressions.Regex] : :Unescape($json) -replace ’(\r|\n|‘r|‘n)’,
>? -replace ’["\p{L}\p{Nd} .,\-_\/O{IN\[\1:+]1’, >’ -replace ’\s+’, ’ ’ | Hide-Sensitivel}}
ConvertTo-Csv -NoTypeInformation |
Select-Object -Skip 1 |
Foreach-Object { $outFileStream.WriteLine($_) }
}
catch {
Add-Content $errorLogPath "$(Get-Date): Found some errors with data during writing JSON to CSV:"
Add-Content $errorLogPath "$_"
Add-Content $errorLogPath "s****‘r‘nFull JSON at that moment:"
Add-Content $errorLogPath "$json"
}

}
Add-Content $logpath "$(Get-Date): CSVfying data!"

start of row: "#s#"
end of row: "#e#"

Special character remove: https://lazywinadmin.com/2015/08/powershell-remove-special-characters.html

$reader = [System.I0.File]::0OpenText ($path)
try {
while($null -ne ($line = $reader.ReadLine())) {
switch -Regex -casesensitive ($line) {
P (P<=""gs#",) (M\A{1,23") (L (7>}, "Hett"$)) P {
$json = *[{’ + "‘r‘n" + " ‘"organizationUnitId‘": " + $Matches[1] + ","
if ($Matches[2]) {
$json += $Matches[2] -replace ’,"{’, ’’ -replace ’1}","#e#"’,
$json += "‘r‘n}l"
$json | Write-Json
$lineCounter += 1;
if ($lineCounter % 500000 -eq 0) {
Add-Content $logpath "$(Get-Date): $lineCounter lines passed and counting..."

IR

s
$json = 77
s
else {
:one0bject while($null -ne ($jsonline = $reader.ReadLine())) {
switch -Regex ($jsonline) {
PN}, et {
$json += "‘r‘n}l"
$json | Write-Json
$lineCounter += 1;
if ($lineCounter % 500000 -eq 0) {
Add-Content $logpath "$(Get-Date): $lineCounter lines passed and counting..."
}
$json = 773
break oneObject
}
default {
if ($json) {
$json += "‘r‘n" + $_
¥
else {
Add-Content $errorLogPath "$(Get-Date): Stumbled to row outside JSON content:"
Add-Content $errorLogPath "$_"
}
}
}
}
}
}
default {
Add-Content $errorLogPath "$(Get-Date): Stumbled to a row outside switch start loop:"
Add-Content $errorLogPath "$_"
}
}
¥
¥
finally {
$reader.Close()
¥

$outFileStream.Close ()
Add-Content $logpath "$(Get-Date): File CSVfying completed! Counted $lineCounter lines of JSON objects!"

exit

68

69

D CSV data cleaning script

The following script was mainly used to clean unique data values from rawmessage-
field. As rawmessage was JSON formatted text data and included log entry specific
identifiers, mainly timestamp, fingerprint, and jobid, such values were necessary to
clean from the rawmessage before data could be given to anomaly algorithm to parse.

This script is used for data that has already been anonymized and is thus in proper
CSV format, one row per log entry. The script works much like the anonymization
script, with stream reading and editing in order to avoid unnecessary memory loading.

CsvCleaner.ps
This script cleans some data out of finished CSV file
to remove unique values to make anomaly detection possible

$prodLevel = "newprod"

$path = "C:\dippa\tuotanto\tuotanto_arkisto_$prodLevel‘_final.csv"
$errorLogPath = "C:\dippa\tuotanto\csvcleaner_$prodLevel‘_error.log"
$logpath = "C:\dippa\tuotanto\csvcleaner_$prodLevel‘_run.log"

Out-File -Encoding utf8 -FilePath $logpath

Add-Content $logpath "$(Get-Date): Starting powershell script"

Out-File -Encoding utf8 -FilePath $errorLogPath

$outFileStream = [System.IO0.StreamWriter] "C:\dippa\tuotanto\
tuotanto_arkisto_$prodLevel‘_cleaned_final.csv"

$headers = "organizationUnitId","level","logType","timeStamp",
"fingerprint","machineName", "processName","jobId","robotName",
"machinelId", "message",'"rawmessage"

$outFileStream.WriteLine(’"organizationUnitId","level","logType",
"timeStamp","machineName","processName","jobId", "robotName","
machineId","message","rawmessage"’)

$timeStampRegex = "timeStamp: .*7,"
$fingerprintRegex = "fingerprint: .*7,"
$jobIdRegex = "jobId: .x7,"

function Remove-Unique {
param (
[Parameter (Mandatory, ValueFromPipeline)]
[string]$lineInProgress
)

$lineInProgress -replace $timeStampRegex ,
nn ¢

nn ¢

-replace $fingerprintRegex ,
-replace $jobIdRegex ,""

4

Add-Content $logpath "$(Get-Date): Cleaning data!"

$lineCounter =
$reader = [Syst
try {

while ($null

70

0
em.I0.File]: :OpenText ($path)

-ne ($line = $reader.ReadLine())) {

if ($lineCounter -eq 0) {
$lineCounter += 1;
continue;

}
$line
try {

$line | ConvertFrom-Csv -header $headers |

Sel

}
catch {

ect-Object organizationUnitId,level,logType,
timeStamp,machineName,processName, jobld,
robotName,machineld,message,
@{1="rawmessage’;e={$_.rawmessage | Remove-Uniquel}} |
ConvertTo-Csv -NoTypeInformation |

Select-Object -Skip 1 |

Foreach-Object { $outFileStream.WriteLine($_) }

Add-Content $errorLogPath "$(Get-Date):

Add

Found some errors with data during reading CSV:"
-Content $errorLogPath "$line"

$lineCounter += 1;
if ($lineCounter % 500000 -eq 0) {

break;
Add-Content $logpath "$(Get-Date):
$lineCounter lines passed and counting..."
}
}
}
finally {
$reader.Close()
}

$outFileStream.Close()

Add-Content $logpath "$(Get-Date): File cleaning completed!
Counted $lineCounter lines of CSV!"

exit

71

E Example of R-script

R-script is responsible for the time frame compression. It works by summarizing
various values in a time frame into new features.

azureml _main <- function(dataframel, dataframe2){
library(dplyr)
library(rlang)
library(lubridate)

print ("R script run.")

df1 <- dataframel %>% mutate(timeStamp= as.Date(timeStamp)) %>%

mutate (ScoredProbabilities = as.numeric(‘Scored Probabilities‘))
m>%

group_by(timeStamp = as.Date(floor_date(timeStamp, "1 week",
week_start=getOption("lubridate.week.start", 1)))) %>%

summarize (LogRowCount = n(),

UniqueJobIDs= n_distinct(jobId),

AnomalyProbMean = mean(ScoredProbabilities),

AnomalyProbMedian = median(ScoredProbabilities),

Quantile90 = quantile(ScoredProbabilities, c(0.90)),

CountOverQ90 = sum(ScoredProbabilities > Quantile90)

)

df12 <- dataframel %> mutate(timeStamp= as.Date(timeStamp)) %>%
select(timeStamp, contains(’HashingFeature’)) %>%
group_by(timeStamp = as.Date(floor_date(timeStamp, "1 week",

week_start=getOption("lubridate.week.start", 1)))) %>%
summarize_all(sum)

df13 <- inner_join(dfl, df12, by = ’timeStamp’)

df2 <- dataframe2 %> mutate(timeStamp= as.Date(timeStamp)) %>%
group_by(timeStamp = as.Date(floor_date(timeStamp, "1 week",

week_start=getOption("lubridate.week.start", 1)))) %>%
summarize(TicketCount = n())

df3 <- inner_join(dfl, df2, by = ’timeStamp’)
df4 <- df3
df3$timeStamp <- strftime(df3$timeStamp, format = "%Y-Ym-%V")

Return datasets as a Named List
return(list(dataset1=df3, dataset2=df4))

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Background and motivation
	1.2 Research objectives
	1.3 Scope
	1.4 Structure

	2 Background
	2.1 Machine learning algorithms and training
	2.2 Cloud ML platforms
	2.3 Regression analysis
	2.4 PCA-based anomaly detection
	2.5 Other anomaly detection algorithms
	2.6 N-gram features and feature hashing
	2.7 Robotic process automation
	2.8 Data sensitivity
	2.9 Log data analysis and anomaly detection with ML

	3 Research material and methods
	3.1 Support ticket data
	3.2 RPA log data
	3.3 Data anonymization
	3.4 Azure cloud resources
	3.5 Azure ML Studio

	4 Machine learning pipeline structure
	4.1 Hybrid machine learning
	4.2 HML phase 1: PCA-based anomaly detection
	4.3 HML phase 2: Ticket count estimation with regression
	4.4 Pipeline branching
	4.5 Comparable metrics

	5 Results
	5.1 Memory issues and limitations
	5.2 Algorithm estimation results
	5.3 Improvement discussion

	6 Summary
	References
	A Final pipeline structure
	B RPA log data example
	C Anonymization script
	D CSV data cleaning script
	E Example of R-script

